1,238 research outputs found

    Quantitatively estimating main soil water-soluble salt ions content based on Visible-near infrared wavelength selected using GC, SR and VIP

    Get PDF
    Soil salinization is the primary obstacle to the sustainable development of agriculture and eco-environment in arid regions. The accurate inversion of the major water-soluble salt ions in the soil using visible-near infrared (VIS-NIR) spectroscopy technique can enhance the effectiveness of saline soil management. However, the accuracy of spectral models of soil salt ions turns out to be affected by high dimensionality and noise information of spectral data. This study aims to improve the model accuracy by optimizing the spectral models based on the exploration of the sensitive spectral intervals of different salt ions. To this end, 120 soil samples were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. After determining the raw reflectance spectrum and content of salt ions in the lab, the spectral data were pre-treated by standard normal variable (SNV). Subsequently the sensitive spectral intervals of each ion were selected using methods of gray correlation (GC), stepwise regression (SR) and variable importance in projection (VIP). Finally, the performance of both models of partial least squares regression (PLSR) and support vector regression (SVR) was investigated on the basis of the sensitive spectral intervals. The results indicated that the model accuracy based on the sensitive spectral intervals selected using different analytical methods turned out to be different: VIP was the highest, SR came next and GC was the lowest. The optimal inversion models of different ions were different. In general, both PLSR and SVR had achieved satisfactory model accuracy, but PLSR outperformed SVR in the forecasting effects. Great difference existed among the optimal inversion accuracy of different ions: the predicative accuracy of Ca2+, Na+, Cl−, Mg2+ and SO42− was very high, that of CO32− was high and K+ was relatively lower, but HCO3− failed to have any predicative power. These findings provide a new approach for the optimization of the spectral model of water-soluble salt ions and improvement of its predicative precision

    Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors

    Get PDF
    Mapping and monitoring soil spatial variability is particularly problematic for temporally and spatially dynamic properties such as soil salinity. The tools necessary to address this classic problem only reached maturity within the past 2 decades to enable field- to regional-scale salinity assessment of the root zone, including GPS, GIS, geophysical techniques involving proximal and remote sensors, and a greater understanding of apparent soil electrical conductivity (ECa) and multi- and hyperspectral imagery. The concurrent development and application of these tools have made it possible to map soil salinity across multiple scales, which back in the 1980s was prohibitively expensive and impractical even at field scale. The combination of ECa-directed soil sampling and remote imagery has played a key role in mapping and monitoring soil salinity at large spatial extents with accuracy sufficient for applications ranging from field-scale site-specific management to statewide water allocation management to control salinity within irrigation districts. The objective of this paper is: (i) to present a review of the geophysical and remote imagery techniques used to assess soil salinity variability within the root zone from field to regional scales; (ii) to elucidate gaps in our knowledge and understanding of mapping soil salinity; and (iii) to synthesize existing knowledge to give new insight into the direction soil salinity mapping is heading to benefit policy makers, land resource managers, producers, agriculture consultants, extension specialists, and resource conservation field staff. The review covers the need and justification for mapping and monitoring salinity, basic concepts of soil salinity and its measurement, past geophysical and remote imagery research critical to salinity assessment, current approaches for mapping salinity at different scales, milestones in multi-scale salinity assessment, and future direction of field- to regional-scale salinity assessment

    Source-tracking cadmium in New Zealand agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a toxic heavy metal, which is accumulated by plants and animals and therefore enters the human food chain. In New Zealand (NZ), where Cd mainly originates from the application of phosphate fertilisers, stable isotopes can be used to trace the fate of Cd in soils and potentially the wider environment due to the limited number of sources in this setting. Prior to 1997, extraneous Cd added to soils in P fertilisers was essentially limited to a single source, the small pacific island of Nauru. Analysis of Cd isotope ratios (ɛ114/110Cd) in Nauru rock phosphate, pre-1997 superphosphate fertilisers, and Canterbury (Lismore Stony Silt Loam) topsoils (Winchmore Research Farm) has demonstrated their close similarity with respect to ɛ114/110Cd. We report a consistent ɛ114/110Cd signature in fertiliser-derived Cd throughout the latter twentieth century. This finding is useful because it allows the application of mixing models to determine the proportions of fertiliser-derived Cd in the wider environment. We believe this approach has good potential because we also found the ɛ114/110Cd in fertilisers to be distinct from unfertilised Canterbury subsoils. In our analysis of the Winchmore topsoil series (1949-2015), the ɛ114/110Cd remained quite constant following the change from Nauru to other rock phosphate sources in 1997, despite a corresponding shift in fertiliser ɛ114/110Cd at this time. We can conclude that to the present day, the Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers. One implication of this finding is that the current applications of P fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country

    Statistical data mining algorithms for optimising analysis of spectroscopic data from on-line NIR mill systems

    Get PDF
    Justin Sexton investigated techniques to identify atypical sugarcane from spectral data. He found that identifying atypical samples could help remove bias in estimates of CCS. His results can be used to track occurrences of atypical cane or improve quality estimates providing benefits at various stages along the industry value chain

    Remote sensing in shallow lake ecology

    Get PDF
    Shallow lakes are an important ecological and socio-economic resource. However, the impact of human pressures, both at the lake and catchment scale, has precipitated a decline in the ecological status of many shallow lakes, both in the UK, and throughout Europe. There is now, as direct consequence, unprecedented interest in the assessment and monitoring of ecological status and trajectory in shallow lakes, not least in response to the European Union Water Framework Directive (2000/60/EC). In this context, the spatially-resolving and panoramic data provided by remote sensing platforms may be of immense value in the construction of effective and efficient strategies for the assessment and monitoring of ecological status in shallow lakes and, moreover, in providing new, spatially-explicit, insights into the function of these ecosystems and how they respond to change. This thesis examined the use of remote sensing data for the assessment of (i) phytoplankton abundance and species composition and (ii) aquatic vegetation distribution and ecophysiological status in shallow lakes with a view to establishing the credence of such an approach and its value in limnological research and monitoring activities. High resolution in-situ and airborne remote sensing data was collected during a 2-year sampling campaign in the shallow lakes of the Norfolk Broads. It was demonstrated that semi-empirical algorithms could be formulated and used to provide accurate and robust estimations of the concentration of chlorophyll-a, even in these optically-complex waters. It was further shown that it was possible to differentiate and quantify the abundance of cyanobacteria using the biomarker pigment C-phycocyanin. The subsequent calibration of the imagery obtained from the airborne reconnaissance missions permitted the construction of diurnal and seasonal regional-scale time-series of phytoplankton dynamics in the Norfolk Broads. This approach was able to deliver unique spatial insights into the migratory behaviour of a potentially-toxic cyanobacterial bloom. It was further shown that remote sensing can be used to map the distribution of aquatic plants in shallow lakes, importantly including the extent of submerged vegetation, which is central to the assessment of ecological status. This research theme was subsequently extended in an exploration of the use of remote sensing for assessing the ecophysiological response of wetland plants to nutrient enrichment. It was shown that remote sensing metrics could be constructed for the quantification of plant vigour. The extrapolation of these techniques enabled spatial heterogeneity in the ecophysiological response of Phragmites australis to lake nutrient enrichment to be characterised and assisted the formulation of a mechanistic explanation for the variation in reedswamp performance in these shallow lakes. It is therefore argued that the spatially synoptic data provided by remote sensing has much to offer the assessment, monitoring and policing of ecological status in shallow lakes and, in particular, for facilitating the development of pan-European scale lake surveillance capabilities for the Water Framework Directive (2000/60/EC). It is also suggested that remote sensing can make a valuable contribution to furthering ecological understanding and, most significantly, in enabling ecosystem processes and functions to be examined at the lake-scale

    Characterization of a Highly Biodiverse Floodplain Meadow Using Hyperspectral Remote Sensing within a Plant Functional Trait Framework

    Get PDF
    We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions

    Linking Canopy Reflectance and Plant Functioning through Radiative Transfer Models

    Get PDF
    Von den Tropen bis zur Tundra hat sich die Pflanzenwelt durch Anpassungen an lokale UmwelteinflĂŒsse diversifiziert. Diese Anpassungen sind in der Funktionsweise der Pflanzen manifestiert, welche unter anderem Wachstum, Fortpflanzung, KonkurrenzfĂ€higkeit oder Ausdauer beinhalten. Pflanzenfunktionen haben nicht nur direkten Einfluss auf die Artenzusammensetzung, sondern auch auf großrĂ€umige Prozesse wie Bio- und AtmossphĂ€reninteraktionen oder StoffkreislĂ€ufe. Folglich wurden viele Forschungsanstrengungen unternommen um Pflanzenfunktionen weiter zu verstehen und zu erfassen, z.B. darauf abzielend generalisierende Modelle von Pflanzenfunktionen zu entwickeln oder individuelle Pflanzenmerkmale als Indikatoren fĂŒr Pflanzenfunktion zu identifizieren. Trotz der wissenschaftlichen Fortschritte fehlt ein vollstĂ€ndiges Bild der Funktionsvielfalt der Pflanzenwelt, sowohl in geographischer als auch funktioneller Hinsicht. Dies ist im Wesentlichen auf die KomplexitĂ€t und die logistischen EinschrĂ€nkungen bei der Messung von Pflanzenfunktionen im Feld zurĂŒckzufĂŒhren. Um dieses Bild zu vervollstĂ€ndigen wird insbesondere optischen Erdbeobachtungsdaten ein hohes Potenzial zugeschrieben. Optische Erdbeobachtungssensoren erfassen das vom Kronendach reflektierte Sonnenlicht. Letzteres wird durch verschiedene biochemische und strukturelle Pflanzenmerkmale (im Folgenden optische Merkmale) beeintrĂ€chtigt (z.B. Blattchlorophyllgehalt oder Blattwinkel). Das Abfangen und Absorbieren von Sonnenlicht ist die Grundlage des pflanzeneigenen Metabolismus und folglich liegt es Nahe, dass diese optischen Merkmale direkt mit Pflanzenfunktionen zusammenhĂ€ngen. Der Zusammenhang dieser optische Merkmale mit Pflanzenfunktionen wurde jedoch noch nicht systematisch untersucht, und ebenso ist der Zusammenhang zwischen Pflanzenfunktion und Kronendachreflektion noch nicht vollstĂ€ndig untersucht. Die physikalischen Interaktionen von Licht und optischen Pflanzenmerkmalen sind bereits hinreichend verstanden und in Strahlungstransfermodellen (RTM) fĂŒr VegetationskronendĂ€cher formuliert. RTM können als prozessbasierte Modelle betrachtet werden, die die Reflektion des Kronendachs in AbhĂ€ngigkeit von optische Merkmalen, dem Bodenhintergrund und der Sonnen-Sensorgeometrie modellieren. Das Ziel und die Innovation dieser Dissertation war die kausalen ZusammenhĂ€nge zwischen Kronendachreflektion und Pflanzenfunktion mittels RTM zu verstehen und zu nutzen. Es wurde gezeigt, dass fĂŒr die Fernerkundung von Pflanzenfunktionen die Kopplung von Kronendachreflektion und Pflanzenfunktionen durch RTM mehrere Potentiale bietet: Erstens, ermöglichen RTM die Kartierung von Pflanzenmerkmalen. Innerhalb einer Fallstudie wurde gezeigt, dass eine Inversion von RTM mit hyperspektralen Daten eine Kartierung von optischen Merkmalen erlaubt, fĂŒr die keine Felddaten zur Modellkalibrierung benötigt werden. Die kartierten Merkmale zeigten eine hohe Übereinstimmung mit MerkmalsausprĂ€gungen aus unabhĂ€ngigen Datenbanken und spiegelten die im Feld gemessenen ökologischen Gradienten wider. Dies deutet darauf hin, dass RTM-Inversion als Ă€ußerst ĂŒbertragbare Methode betrachtet werden kann, um rĂ€umliche Karten von Pflanzenmerkmalen zu erstellen, die als Proxies fĂŒr Pflanzenfunktionen dienen können. Allerdings erfordert die Implementierung von RTM Inversionen fundierte Kenntnisse ĂŒber die Prinzipien der Strahlentransfermodellierung und der zu untersuchenden Vegetationscharakteristiken. Zweitens, ermöglichen RTM die Untersuchung von ZusammenhĂ€ngen zwischen Pflanzenfunktion und der Kronendachreflektion. In der vorliegenden Thesis wurden simulierte Kronendachspektren aus einem RTM verwendet, um den Beitrag der optischen Merkmale zu den spektralen Unterschieden zwischen Pflanzenfunktionstypen zu erfassen. Die Ergebnisse zeigten die dominanten Pflanzenmerkmale und die entsprechenden spektralen Charakteristiken die fĂŒr eine fernerkundliche Unterscheidung der Pflanzenfunktion von großer Relevanz sind. DarĂŒber hinaus wurde gezeigt, dass RTM-basierte Simulationen EinschrĂ€nkungen von Fallstudien kompensieren und Kenntnisse ĂŒber die ZusammenhĂ€nge von Pflanzenfunktionen, Pflanzeneigenschaften und Kronendachtreflektion erweitern können. Diese Kenntnisse bilden die Grundlage fĂŒr die Entwicklung und Verbesserung von Sensoren und Algorithmen zur Fernerkundung von Pflanzenfunktionen. Drittens, erweitern RTM und die darin enthaltenen optischen Merkmale unsere Möglichkeiten Unterschiede in der Pflanzenfunktion zu verstehen und zu quantifizieren. Mit Hilfe von in-situ gemessenen MerkmalsausprĂ€gungen konnte gezeigt werden, dass die in RTM enthaltenen optischen Merkmale kausal mit primĂ€ren Pflanzenfunktionen zusammenhĂ€ngen. Dies wiederum bedeutet, dass die Reflexion des Kronendachs unmittelbar mit den primĂ€ren Funktionen der Pflanze zusammenhĂ€ngt (‘Reflektion folgt Funktion’). DarĂŒber hinaus wurde festgestellt, dass optische Merkmale vergleichbare oder sogar höhere Korrelationen mit den verwendeten pflanzlichen Funktionsgradienten aufweisen als die in der Pflanzenökologie ĂŒblich verwendeten Merkmale. Entsprechend bieten RTM sowohl eine alternative Perspektive als auch ein Set von Pflanzenmerkmalen mit denen Unterschiede der Pflanzenfunktion charakterisiert und quantifiziert werden können. Diese Merkmale können somit als wertvolle ErgĂ€nzung oder Alternative zu den in der Pflanzenökologie ĂŒblichen Merkmalen dienen. Zusammengefasst zeigt diese Thesis, dass RTM unsere Möglichkeiten erweiterten können die funktionelle Vielfalt der globalen Vegetationsbedeckung weiter zu verstehen und zu erfassen und fĂŒhrt zukunftsrelevante Forschungspotentiale auf
    • 

    corecore