111 research outputs found

    On the Core of a Unicyclic Graph

    Full text link
    A set S is independent in a graph G if no two vertices from S are adjacent. By core(G) we mean the intersection of all maximum independent sets. The independence number alpha(G) is the cardinality of a maximum independent set, while mu(G) is the size of a maximum matching in G. A connected graph having only one cycle, say C, is a unicyclic graph. In this paper we prove that if G is a unicyclic graph of order n and n-1 = alpha(G) + mu(G), then core(G) coincides with the union of cores of all trees in G-C.Comment: 8 pages, 5 figure

    Computing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs

    Full text link
    Let alpha(G) denote the maximum size of an independent set of vertices and mu(G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is perfect. If alpha(G) + mu(G) equals the number of vertices of G, then it is called a Konig-Egervary graph. A graph is unicyclic if it has a unique cycle. In 2010, Bartha conjectured that a unique perfect matching, if it exists, can be found in O(m) time, where m is the number of edges. In this paper we validate this conjecture for Konig-Egervary graphs and unicylic graphs. We propose a variation of Karp-Sipser leaf-removal algorithm (Karp and Spiser, 1981), which ends with an empty graph if and only if the original graph is a Konig-Egervary graph with a unique perfect matching obtained as an output as well. We also show that a unicyclic non-bipartite graph G may have at most one perfect matching, and this is the case where G is a Konig-Egervary graph.Comment: 10 pages, 5 figure

    The spectrum of the Hilbert space valued second derivative with general self-adjoint boundary conditions

    Full text link
    We consider a large class of self-adjoint elliptic problem associated with the second derivative acting on a space of vector-valued functions. We present two different approaches to the study of the associated eigenvalues problems. The first, more general one allows to replace a secular equation (which is well-known in some special cases) by an abstract rank condition. The latter seems to apply particularly well to a specific boundary condition, sometimes dubbed "anti-Kirchhoff" in the literature, that arise in the theory of differential operators on graphs; it also permits to discuss interesting and more direct connections between the spectrum of the differential operator and some graph theoretical quantities. In either case our results yield, among other, some results on the symmetry of the spectrum

    The algebraic connectivity of lollipop graphs

    Get PDF
    AbstractLet Cn,g be the lollipop graph obtained by appending a g-cycle Cg to a pendant vertex of a path on n-g vertices. In 2002, Fallat, Kirkland and Pati proved that for n⩾3g-12 and g⩾4, α(Cn,g)>α(Cn,g-1). In this paper, we prove that for g⩾4, α(Cn,g)>α(Cn,g-1) for all n, where α(Cn,g) is the algebraic connectivity of Cn,g

    Spectral Bounds for the Connectivity of Regular Graphs with Given Order

    Get PDF
    The second-largest eigenvalue and second-smallest Laplacian eigenvalue of a graph are measures of its connectivity. These eigenvalues can be used to analyze the robustness, resilience, and synchronizability of networks, and are related to connectivity attributes such as the vertex- and edge-connectivity, isoperimetric number, and characteristic path length. In this paper, we present two upper bounds for the second-largest eigenvalues of regular graphs and multigraphs of a given order which guarantee a desired vertex- or edge-connectivity. The given bounds are in terms of the order and degree of the graphs, and hold with equality for infinite families of graphs. These results answer a question of Mohar.Comment: 24 page

    The Least Algebraic Connectivity of Graphs

    Get PDF
    The algebraic connectivity of a graph is defined as the second smallest eigenvalue of the Laplacian matrix of the graph, which is a parameter to measure how well a graph is connected. In this paper, we present two unique graphs whose algebraic connectivity attain the minimum among all graphs whose complements are trees, but not stars, and among all graphs whose complements are unicyclic graphs, but not stars adding one edge, respectively
    • …
    corecore