116,367 research outputs found

    Local Nash Realizations

    Full text link
    In this paper we investigate realization theory of a class of non-linear systems, called Nash systems. Nash systems are non-linear systems whose vector fields and readout maps are analytic semi-algebraic functions. In this paper we will present a characterization of minimality in terms of observability and reachability and show that minimal Nash systems are isomorphic. The results are local in nature, i.e. they hold only for small time intervals. The hope is that the presented results can be extended to hold globally.Comment: 8 pages, extended conference pape

    Finite-time behavior of inner systems

    Get PDF
    In this paper, we investigate how nonminimum phase characteristics of a dynamical system affect its controllability and tracking properties. For the class of linear time-invariant dynamical systems, these characteristics are determined by transmission zeros of the inner factor of the system transfer function. The relation between nonminimum phase zeros and Hankel singular values of inner systems is studied and it is shown how the singular value structure of a suitably defined operator provides relevant insight about system invertibility and achievable tracking performance. The results are used to solve various tracking problems both on finite as well as on infinite time horizons. A typical receding horizon control scheme is considered and new conditions are derived to guarantee stabilizability of a receding horizon controller

    Equal Entries in Totally Positive Matrices

    Full text link
    We show that the maximal number of equal entries in a totally positive (resp. totally nonsingular) n-by-nn\textrm{-by-}n matrix is Θ(n4/3)\Theta(n^{4/3}) (resp. Θ(n3/2\Theta(n^{3/2})). Relationships with point-line incidences in the plane, Bruhat order of permutations, and TPTP completability are also presented. We also examine the number and positionings of equal 2-by-22\textrm{-by-}2 minors in a 2-by-n2\textrm{-by-}n TPTP matrix, and give a relationship between the location of equal 2-by-22\textrm{-by-}2 minors and outerplanar graphs.Comment: 15 page

    Robust Component-based Network Localization with Noisy Range Measurements

    Full text link
    Accurate and robust localization is crucial for wireless ad-hoc and sensor networks. Among the localization techniques, component-based methods advance themselves for conquering network sparseness and anchor sparseness. But component-based methods are sensitive to ranging noises, which may cause a huge accumulated error either in component realization or merging process. This paper presents three results for robust component-based localization under ranging noises. (1) For a rigid graph component, a novel method is proposed to evaluate the graph's possible number of flip ambiguities under noises. In particular, graph's \emph{MInimal sepaRators that are neaRly cOllineaR (MIRROR)} is presented as the cause of flip ambiguity, and the number of MIRRORs indicates the possible number of flip ambiguities under noise. (2) Then the sensitivity of a graph's local deforming regarding ranging noises is investigated by perturbation analysis. A novel Ranging Sensitivity Matrix (RSM) is proposed to estimate the node location perturbations due to ranging noises. (3) By evaluating component robustness via the flipping and the local deforming risks, a Robust Component Generation and Realization (RCGR) algorithm is developed, which generates components based on the robustness metrics. RCGR was evaluated by simulations, which showed much better noise resistance and locating accuracy improvements than state-of-the-art of component-based localization algorithms.Comment: 9 pages, 15 figures, ICCCN 2018, Hangzhou, Chin
    corecore