35 research outputs found

    The Cost of Perfection for Matchings in Graphs

    Full text link
    Perfect matchings and maximum weight matchings are two fundamental combinatorial structures. We consider the ratio between the maximum weight of a perfect matching and the maximum weight of a general matching. Motivated by the computer graphics application in triangle meshes, where we seek to convert a triangulation into a quadrangulation by merging pairs of adjacent triangles, we focus mainly on bridgeless cubic graphs. First, we characterize graphs that attain the extreme ratios. Second, we present a lower bound for all bridgeless cubic graphs. Third, we present upper bounds for subclasses of bridgeless cubic graphs, most of which are shown to be tight. Additionally, we present tight bounds for the class of regular bipartite graphs

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    How tough is toughness?

    Get PDF
    The concept of toughness was introduced by Chvátal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors

    On vertices enforcing a Hamiltonian cycle

    Get PDF
    A nonempty vertex set X ⊆ V(G) of a hamiltonian graph G is called an of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar graphs, k-connected graphs and prisms over graphs is determined

    Hamiltonicity of locally hamiltonian and locally traceable graphs

    Get PDF
    Please read abstract in the article.The University of South Africa and the National Research Foundation of South Africa for their sponsorship of the Salt Rock Workshops of 28 July–10 August 2013 and 20–30 January 2016, which contributed towards results in this paper. The authors thank the DST-NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) for financial support, grant number BA2017/268. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the CoE-MaSS. This material is based upon the third author’s work supported by the National Research Foundation of S.A. under Grant number 81075 and the second author’s work supported by the National Research Foundation of S.A. under Grant number 107668.http://www.elsevier.com/locate/dam2019-02-19hj2018Mathematics and Applied Mathematic

    A Structured Table of Graphs with Symmetries and Other Special Properties

    Full text link
    We organize a table of regular graphs with minimal diameters and minimal mean path lengths, large bisection widths and high degrees of symmetries, obtained by enumerations on supercomputers. These optimal graphs, many of which are newly discovered, may find wide applications, for example, in design of network topologies.Comment: add details about automorphism grou

    On the minimum leaf number of cubic graphs

    Full text link
    The \emph{minimum leaf number} ml(G)\hbox{ml} (G) of a connected graph GG is defined as the minimum number of leaves of the spanning trees of GG. We present new results concerning the minimum leaf number of cubic graphs: we show that if GG is a connected cubic graph of order nn, then ml(G)≤n6+13\mathrm{ml}(G) \leq \frac{n}6 + \frac13, improving on the best known result in [Inf. Process. Lett. 105 (2008) 164-169] and proving the conjecture in [Electron. J. Graph Theory and Applications 5 (2017) 207-211]. We further prove that if GG is also 2-connected, then ml(G)≤n6.53\mathrm{ml}(G) \leq \frac{n}{6.53}, improving on the best known bound in [Math. Program., Ser. A 144 (2014) 227-245]. We also present new conjectures concerning the minimum leaf number of several types of cubic graphs and examples showing that the bounds of the conjectures are best possible.Comment: 17 page
    corecore