33 research outputs found

    The small weight codewords of the functional codes associated to non-singular hermitian varieties

    Get PDF
    This article studies the small weight codewords of the functional code C (Herm) (X), with X a non-singular Hermitian variety of PG(N, q (2)). The main result of this article is that the small weight codewords correspond to the intersections of X with the singular Hermitian varieties of PG(N, q (2)) consisting of q + 1 hyperplanes through a common (N - 2)-dimensional space I , forming a Baer subline in the quotient space of I . The number of codewords having these small weights is also calculated. In this way, similar results are obtained to the functional codes C (2)(Q), Q a non-singular quadric (Edoukou et al., J. Pure Appl. Algebra 214:1729-1739, 2010), and C (2)(X), X a non-singular Hermitian variety (Hallez and Storme, Finite Fields Appl. 16:27-35, 2010)

    A study of intersections of quadrics having applications on the small weight codewords of the functional codes C2(Q), Q a non-singular quadric

    Get PDF
    AbstractWe study the small weight codewords of the functional code C2(Q), with Q a non-singular quadric in PG(N,q). We prove that the small weight codewords correspond to the intersections of Q with the singular quadrics of PG(N,q) consisting of two hyperplanes. We also calculate the number of codewords having these small weights

    Intersections of the Hermitian surface with irreducible quadrics in PG(3,q2)PG(3,q^2), qq odd

    Get PDF
    In PG(3,q2)PG(3,q^2), with qq odd, we determine the possible intersection sizes of a Hermitian surface H\mathcal{H} and an irreducible quadric Q\mathcal{Q} having the same tangent plane π\pi at a common point P∈Q∩HP\in{\mathcal Q}\cap{\mathcal H}.Comment: 14 pages; clarified the case q=

    Codes and Curves

    Get PDF
    When information is transmitted, errors are likely to occur. Coding theory examines effi cient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed- Solomon codes, one can see how to defi ne new codes based on divisors on algebraic curves. For instance, using modular curves over fi nite fi elds, Tsfasman, Vladut, and Zink showed that one can defi ne a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting fi eld of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, including cyclic codes, and both bounds and asymptotic bounds on the parameters of codes. Algebraic geometry is introduced, with particular attention given to projective curves, rational functions and divisors. The construction of algebraic geometric codes is given, and the Tsfasman-Vladut-Zink result mentioned above is discussed

    Intersection problems in finite geometries

    Get PDF

    Codes and caps from orthogonal Grassmannians

    Get PDF
    In this paper we investigate linear error correcting codes and projective caps related to the Grassmann embedding εkgr\varepsilon_k^{gr} of an orthogonal Grassmannian Δk\Delta_k. In particular, we determine some of the parameters of the codes arising from the projective system determined by εkgr(Δk)\varepsilon_k^{gr}(\Delta_k). We also study special sets of points of Δk\Delta_k which are met by any line of Δk\Delta_k in at most 2 points and we show that their image under the Grassmann embedding εkgr\varepsilon_k^{gr} is a projective cap.Comment: Keywords: Polar Grassmannian; dual polar space; embedding; error correcting code; cap; Hadamard matrix; Sylvester construction (this is a slightly revised version of v2, with updated bibliography

    Simplified decoding techniques for linear block codes

    Get PDF
    Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications
    corecore