772 research outputs found

    A necessary condition for boundary sensitivity of attractive non-linear stochastic cellular automata in ZxZ

    Get PDF
    International audienceThis paper tackles the question of the environmental robustness of a particular class of two-dimensional finite threshold Boolean cellular automata when they are subjected to distinct fixed boundary instances. More precisely, focusing on a non-linear stochastic version of the classical threshold function governing the evolution of formal neural networks, we show the existence of a necessary condition under which attractive cellular automata of this form become boundary sensitive, i.e., we highlight a condition without which a cellular automaton hits the same asymptotic dynamical behaviour whatever its boundary conditions are. To go further, we give an explicit formula for this necessary condition

    Inductive Pattern Formation

    Get PDF
    With the extended computational limits of algorithmic recursion, scientific investigation is transitioning away from computationally decidable problems and beginning to address computationally undecidable complexity. The analysis of deductive inference in structure-property models are yielding to the synthesis of inductive inference in process-structure simulations. Process-structure modeling has examined external order parameters of inductive pattern formation, but investigation of the internal order parameters of self-organization have been hampered by the lack of a mathematical formalism with the ability to quantitatively define a specific configuration of points. This investigation addressed this issue of quantitative synthesis. Local space was developed by the Poincare inflation of a set of points to construct neighborhood intersections, defining topological distance and introducing situated Boolean topology as a local replacement for point-set topology. Parallel development of the local semi-metric topological space, the local semi-metric probability space, and the local metric space of a set of points provides a triangulation of connectivity measures to define the quantitative architectural identity of a configuration and structure independent axes of a structural configuration space. The recursive sequence of intersections constructs a probabilistic discrete spacetime model of interacting fields to define the internal order parameters of self-organization, with order parameters external to the configuration modeled by adjusting the morphological parameters of individual neighborhoods and the interplay of excitatory and inhibitory point sets. The evolutionary trajectory of a configuration maps the development of specific hierarchical structure that is emergent from a specific set of initial conditions, with nested boundaries signaling the nonlinear properties of local causative configurations. This exploration of architectural configuration space concluded with initial process-structure-property models of deductive and inductive inference spaces. In the computationally undecidable problem of human niche construction, an adaptive-inductive pattern formation model with predictive control organized the bipartite recursion between an information structure and its physical expression as hierarchical ensembles of artificial neural network-like structures. The union of architectural identity and bipartite recursion generates a predictive structural model of an evolutionary design process, offering an alternative to the limitations of cognitive descriptive modeling. The low computational complexity of these models enable them to be embedded in physical constructions to create the artificial life forms of a real-time autonomously adaptive human habitat

    A Computational Algebra Approach to the Reverse Engineering of Gene Regulatory Networks

    Full text link
    This paper proposes a new method to reverse engineer gene regulatory networks from experimental data. The modeling framework used is time-discrete deterministic dynamical systems, with a finite set of states for each of the variables. The simplest examples of such models are Boolean networks, in which variables have only two possible states. The use of a larger number of possible states allows a finer discretization of experimental data and more than one possible mode of action for the variables, depending on threshold values. Furthermore, with a suitable choice of state set, one can employ powerful tools from computational algebra, that underlie the reverse-engineering algorithm, avoiding costly enumeration strategies. To perform well, the algorithm requires wildtype together with perturbation time courses. This makes it suitable for small to meso-scale networks rather than networks on a genome-wide scale. The complexity of the algorithm is quadratic in the number of variables and cubic in the number of time points. The algorithm is validated on a recently published Boolean network model of segment polarity development in Drosophila melanogaster.Comment: 28 pages, 5 EPS figures, uses elsart.cl

    Extreme events: dynamics, statistics and prediction

    Get PDF

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi

    Techniques for automated parameter estimation in computational models of probabilistic systems

    Get PDF
    The main contribution of this dissertation is the design of two new algorithms for automatically synthesizing values of numerical parameters of computational models of complex stochastic systems such that the resultant model meets user-specified behavioral specifications. These algorithms are designed to operate on probabilistic systems – systems that, in general, behave differently under identical conditions. The algorithms work using an approach that combines formal verification and mathematical optimization to explore a model\u27s parameter space. The problem of determining whether a model instantiated with a given set of parameter values satisfies the desired specification is first defined using formal verification terminology, and then reformulated in terms of statistical hypothesis testing. Parameter space exploration involves determining the outcome of the hypothesis testing query for each parameter point and is guided using simulated annealing. The first algorithm uses the sequential probability ratio test (SPRT) to solve the hypothesis testing problems, whereas the second algorithm uses an approach based on Bayesian statistical model checking (BSMC). The SPRT-based parameter synthesis algorithm was used to validate that a given model of glucose-insulin metabolism has the capability of representing diabetic behavior by synthesizing values of three parameters that ensure that the glucose-insulin subsystem spends at least 20 minutes in a diabetic scenario. The BSMC-based algorithm was used to discover the values of parameters in a physiological model of the acute inflammatory response that guarantee a set of desired clinical outcomes. These two applications demonstrate how our algorithms use formal verification, statistical hypothesis testing and mathematical optimization to automatically synthesize parameters of complex probabilistic models in order to meet user-specified behavioral propertie

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore