603 research outputs found

    Boundary integral formulation for interfacial cracks in thermodiffusive bimaterials

    Full text link
    An original boundary integral formulation is proposed for the problem of a semi-infinite crack at the interface between two dissimilar elastic materials in the presence of heat flows and mass diffusion. Symmetric and skew-symmetric weight function matrices are used together with a generalized Betti's reciprocity theorem in order to derive a system of integral equations that relate the applied loading, the temperature and mass concentration fields, the heat and mass fluxes on the fracture surfaces and the resulting crack opening. The obtained integral identities can have many relevant applications, such as for the modelling of crack and damage processes at the interface between different components in electrochemical energy devices characterized by multi-layered structures (solid oxide fuel cells and lithium ions batteries).Comment: 43 pages, 9 figure

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    A comprehensive boundary element method is presented for transient thermoelastic analysis of hot section Earth-to-Orbit engine components. This time-domain formulation requires discretization of only the surface of the component, and thus provides an attractive alternative to finite element analysis for this class of problems. In addition, steep thermal gradients, which often occur near the surface, can be captured more readily since with a boundary element approach there are no shape functions to constrain the solution in the direction normal to the surface. For example, the circular disc analysis indicates the high level of accuracy that can be obtained. In fact, on the basis of reduced modeling effort and improved accuracy, it appears that the present boundary element method should be the preferred approach for general problems of transient thermoelasticity

    Development of an integrated BEM for hot fluid-structure interaction

    Get PDF
    One of the most difficult problems in engine structural component durability analysis is the determination of the temperatures and fluxes in the structural components directly in contact with the hot gas flow path. Currently there exists no rational analytical or numerical technique which can effectively deal with this problem. Since the temperature distribution in the structural components are strongly influenced by both the fluid flow and the deformation as well as the cooling system in the structure, the only effective way to deal with this problem is to develop an integrated solid mechanics, fluid mechanics and heat transfer analysis for this problem. Herein, the Boundary Element Method (BEM) is chosen as the basic analysis tool principally because the definition of quantities like fluxes, temperatures, displacements, and velocities are very precise on a boundary based discretization scheme. One fundamental difficulty is that a BEM analysis requires a considerable amount of analytical work which is not present in other numerical methods. During the past year, all of this analytical work was completed and a two dimensional, general purpose code was written. A portion of the work is summarized

    The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data

    Get PDF
    An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified boundary data, as well as the temperature and displacement inside a body from over-specified boundary data measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two and three dimensions showing the feasibility and ease of implementation of the proposed technique

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported

    On quasi-static approximations in linear thermoelastodynamics

    Get PDF
    The validity of the coupled and uncoupled quasi-static approximations is considered for the initial boundary value problem of linear thermoelasticity subject to homoge-neous Dirichlet boundary conditions, and for solutions and their derivatives that are mean-square integrable. Essential components in the proof, of independent interest, are conservation laws and associated estimates for the exact and approximate systemsPeer ReviewedPostprint (author's final draft

    Regularized MFS solution of inverse boundary value problems in three-dimensional steady-state linear thermoelasticity

    Get PDF
    We investigate the numerical reconstruction of the missing thermal and mechanical boundary conditions on an inaccessible part of the boundary in the case of three-dimensional linear isotropic thermoelastic materials from the knowledge of over-prescribed noisy data on the remaining accessible boundary. We employ the method of fundamental solutions (MFS) and several singular value decomposition (SVD)-based regularization methods, e.g. the Tikhonov regularization method (Tikhonov and Arsenin, 1986), the damped SVD and the truncated SVD (Hansen, 1998), whilst the regularization parameter is selected according to the discrepancy principle (Morozov, 1966), generalized cross-validation criterion (Golub et al., 1979) and Hansen's L-curve method (Hansen and O'Leary, 1993)
    corecore