59,764 research outputs found

    Sampled-data and discrete-time H2 optimal control

    Get PDF
    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This discrete-time H2 problem is always singular. Motivated by this, in this paper we give a treatment of the discrete-time H2 optimal control problem in its full generality. The results we obtain are then applied to the singular discrete-time H2 problem arising from the sampled-data H2 problem. In particular, we give conditions for the existence of optimal sampled data controllers. We also show that the H2 performance of a continuous-time controller can always be recovered asymptotically by choosing the sampling period sufficiently small. Finally, we show that the optimal sampled-data H2 performance converges to the continuous-time optimal H2 performance as the sampling period converges to zero.

    Sampled-data and discrete-time H2H_2 optimal control

    Get PDF
    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This discrete-time H2 problem is always singular. Motivated by this, in this paper we give a treatment of the discrete-time H2 optimal control problem in its full generality. The results we obtain are then applied to the singular discrete-time H2 problem arising from the sampled-data H2 problem. In particular, we give conditions for the existence of optimal sampled data controllers. We also show that the H2 performance of a continuous-time controller can always be recovered asymptotically by choosing the sampling period sufficiently small. Finally, we show that the optimal sampled-data H2 performance converges to the continuous-time optimal H2 performance as the sampling period converges to zero

    Robust control of systems with real parameter uncertainty and unmodelled dynamics

    Get PDF
    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value

    Minimum time control of the rocket attitude reorientation associated with orbit dynamics

    Get PDF
    In this paper, we investigate the minimal time problem for the guidance of a rocket, whose motion is described by its attitude kinematics and dynamics but also by its orbit dynamics. Our approach is based on a refined geometric study of the extremals coming from the application of the Pontryagin maximum principle. Our analysis reveals the existence of singular arcs of higher-order in the optimal synthesis, causing the occurrence of a chattering phenomenon, i.e., of an infinite number of switchings when trying to connect bang arcs with a singular arc. We establish a general result for bi-input control-affine systems, providing sufficient conditions under which the chattering phenomenon occurs. We show how this result can be applied to the problem of the guidance of the rocket. Based on this preliminary theoretical analysis, we implement efficient direct and indirect numerical methods, combined with numerical continuation, in order to compute numerically the optimal solutions of the problem.Comment: 33 pages, 14 figure

    Singular mean-field control games with applications to optimal harvesting and investment problems

    Full text link
    This paper studies singular mean field control problems and singular mean field stochastic differential games. Both sufficient and necessary conditions for the optimal controls and for the Nash equilibrium are obtained. Under some assumptions the optimality conditions for singular mean-field control are reduced to a reflected Skorohod problem, whose solution is proved to exist uniquely. Applications are given to optimal harvesting of stochastic mean-field systems, optimal irreversible investments under uncertainty and to mean-field singular investment games. In particular, a simple singular mean-field investment game is studied where the Nash equilibrium exists but is not unique

    L1L^1-Minimization for Mechanical Systems

    Get PDF
    Second order systems whose drift is defined by the gradient of a given potential are considered, and minimization of the L1L^1-norm of the control is addressed. An analysis of the extremal flow emphasizes the role of singular trajectories of order two [25,29]; the case of the two-body potential is treated in detail. In L1L^1-minimization, regular extremals are associated with controls whose norm is bang-bang; in order to assess their optimality properties, sufficient conditions are given for broken extremals and related to the no-fold conditions of [20]. An example of numerical verification of these conditions is proposed on a problem coming from space mechanics
    corecore