5,811 research outputs found

    Codes for protection from synchronization loss and additive errors

    Get PDF
    Codes for protection from synchronization loss and additive error

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Coding for reliable satellite communications

    Get PDF
    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks

    Studies in Error Correction Coding

    Get PDF
    For a proper understanding of the implementation of error correction coding schemes, a basic knowledge of communication channels and networks is necessary. Communication channels incur several types of errors, including noise and signal attenuation. Consequently, the benefits of a particular error control scheme are determined by the errors which occur most frequently. First, the types of transmissions across which errors occur will be considered. Subsequently, the types of errors that can appear during these transmissions and a short discussion of the cause of errors are necessary to understand the several types of errors that can occur. Afterward, the implementation of several major coding schemes will be discussed, including block codes, linear codes, and convolutional codes. Convolutional codes will specifically be discussed in terms of turbo codes and low-density parity check codes. Lastly, research of error correction coding schemes will involve several kinds of resources, including textbooks, journal articles, and technical publications. These resources will be used for the understanding of a practical implementation of an error correction coding scheme
    • …
    corecore