4,662 research outputs found

    Heating Hot Atmospheres with Active Galactic Nuclei

    Full text link
    High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy and Astrophysics. This version supersedes the April 2007 version in Reviews in Advance (references and minor corrections were added), and is similar to the one scheduled to appear in Volume 45 of ARA

    GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    Get PDF
    We have developed an efficient simulation tool 'GOLLUM' for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as LDA+U and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum-Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects and pulling curves and conductance histograms for mechanically-controlled-break-junction experiments.Comment: 66 journal pages, 57 figure

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Research opportunities in bone demineralization, phase 3

    Get PDF
    Bone demineralization, calcium responses to weightlessness, endocrine responses to weightlessness, mechanisms of bone loss, biomedical research, pathogenesis, and endocrine effects are discussed

    Oceanus.

    Get PDF
    v. 25, no. 2 (1982

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Ion mobility-mass spectrometry for structural characterization and applied \u27omics: A study in neurodegenerative diseases

    Get PDF
    Huntington\u27s disease is neurodegenerative disease caused by an expanded polyglutamine-coding CAG repeat in exon 1 of the huntingtin gene. Huntingtin exon 1 forms the primary toxic amyloid structure in Huntington\u27s disease; disease severity is directly correlated with polyglutamine length. Recent works have shown that fully formed amyloid plaques may not represent the most toxic species in Huntington\u27s disease; the most neurotoxic species may be small, diffuse oligomer (4 - 20 monomer units) that are precursors to amyloid plaques. While the polyglutamine region is undisputed as the primary constituent of amyloid structure, aggregation kinetics and morphology are regulated by the presence of flanking sequences that are N- and C-terminal to theamyloid forming tract. The first seventeen residues of huntingtin exon 1 (Nt17) can form an amphipathic &agr;-helix depending upon solution conditions and the presence of a binding partner, and in most cases, mediates oligomer formation. C-terminal to the polyglutamine tract is a proline-rich region, or in the case of a model peptide a polyproline region (polyP), that can form a polyproline-type II (PPII) helix, which may regulate Nt17 in huntingtin protein with short polyglutamine regions. Much is unknown regarding residue-specific Nt17-Nt17 and Nt17-polyP interactions. The work described here utilized state-of-the-art deuterium exchange mass spectrometry techniques to identify critical hydrophilic residues in early stages of oligomer formation. Monomeric and multimeric conformations of Nt17, idependent og the polyglutamine domain, were then studied using ion mobility-mass spectrometry and molecular dynamics to gain insight into the earliest stages of Nt17-Nt17 association, and thus, aggregation. Monomeric and multimeric Nt17 could form extended helices in the gas phase. Key hydrophilic residues were chemically modified, which resulted in a sharp decline in multimer formation. Finally, Nt17-polyP interactions were probed using gas-phase deuterium exchange mass spectrometry, supplemented with molecular dynamics and an exchange kinetics model. The obtained gas-phase structures showed a reduction in Nt17 extended &agr;-helix, when compared to a monomeric and extended homodimeric conformation. Thus, it is hypothesized that polyP regulates Nt17 by not allowing transition to the amphipathic &agr;-helix. The results of this study examine the structural heterogeneity of a sequence thought to drive a potentially toxic aggregate morphology, pinpoint key residues in early oligomer formation, and provide strategies for regulation of oligomer formation
    • …
    corecore