513 research outputs found

    The University of Iowa General Catalog 2016-17

    Get PDF

    The University of Iowa 2018-19 General Catalog

    Get PDF

    Data Journeys in the Sciences

    Get PDF
    This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research

    The University of Iowa 2020-21 General Catalog

    Get PDF

    The University of Iowa 2017-18 General Catalog

    Get PDF

    The University of Iowa 2019-20 General Catalog

    Get PDF

    Data journeys in the sciences

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research.European CommissionAustralian Research CouncilAlan Turing Institut

    Advancing the Science of Cancer in Latinos

    Get PDF
    This open access book is a collection of articles based on presentations from the 2020 Advancing the Science of Cancer in Latinos conference that gives an overview of conference outcomes. The vision of the conference has been to unite researchers, scientists, physicians and other healthcare professionals, patient advocates, and students from across the world to discuss research advancements, identify gaps, and develop actionable goals to translate basic research findings into clinical best practices, effective community interventions, and professional training programs to decrease cancer risks and eliminate cancer disparities for Latinos. This conference comes at an especially important time when Latinos – the largest and youngest minority group in the U.S. – are expected to face a 142% rise in cancer cases in the coming years. Disparities continue to impact this population in critical areas: access to preventive and clinical care, changeable risk behaviors, quality of life, and mortality. Each chapter summarizes the presentation and includes current knowledge in the specific topic areas, identified gaps, and opportunities for future research. Topics explored include: Applying an Exposome-Wide (ExWAS) Approach to Latino Cancer Disparities Supportive Care Needs and Coping Strategies Used by Latino Men Cancer Survivors Optimizing Engagement of the Latino Community in Cancer Research Latino Population Growth and the Changing Demography of Cancer Implementation Science to Enhance the Value of Cancer Research in Latinos A Strength-Based Approach to Cancer Prevention in Latinxs Overcoming Clinical Research Disparities by Advancing Inclusive Research Advancing the Science of Cancer in Latinos: Building Collaboration for Action will appeal to a wide readership due to its comprehensive coverage of topics ranging from basic science and community prevention research to clinical practice to policy. The book is an essential resource for physicians and other medical professionals, researchers, scientists, academicians, patient advocates, and students. It also will appeal to policy-makers, NCI-designated cancer centers, academic centers, state health departments, and community organizations

    Putting the stars within reach: NASA 3D data-based models in 3D print and virtual reality applications, and their potential effects on improving spatial reasoning skills and STEM interest in underrepresented groups of young female learners

    Get PDF
    This study examined the effects of data-based astrophysical 3D models delivered via computer based interactions, virtual reality, and 3D prints, on spatial reasoning skills and interest in science, technology, engineering, and mathematics (STEM) for females aged 9-12, in particular from underrepresented groups. Underrepresented, or underserved, audiences refer to the demographic status of, and the services that are offered or presented to, segments of a community, typically not currently being served within a larger population that might benefit from such services (Williams et al., 2009). Research to date has not focussed on the development of STEM interests and spatial reasoning skills of young females, particularly at the time when such young learners are forming potential identities in or with STEM and beginning to think about educational and career-related options. STEM interest has been shown to be a critical component of developing a STEM identity, and can be intertwined with issues of confidence and self-efficacy for young female learners (see e.g., Bian et al., 2017; Blotnicky et al., 2018; Fouad, & Smith, 1996; Simpkins et al., 2006). Mental manipulation and understanding of 2D or 3D objects has been posited as an important STEM skill, helping to indicate future mathematical success, science performance, and potential pursuit of STEM careers (Ganley et al., 2014; Hegarty & Waller, 2005; Rafi et al., 2005; Uttal & Cohen, 2012; Verdine et al., 2014). A mixed methods design was used for this research. In Study 1, a qualitative approach examined potential obstacles to and challenges in working in STEM field for females from underrepresented groups. Unstructured interviews with 11 adult females representing diverse groups and various STEM careers yielded important historical perspectives, along with recommendations for building STEM careers for young females today. The recommendations from Study 1 generated three areas that informed the development of Study 2: the critical role of having a strong mentor, role model, or support system in place along the STEM pathway; the need to work with and engage females in STEM activities and subjects when they are as young as possible, preferably while in primary/elementary school; and the importance of developing a sense of STEM self-efficacy in young females. Study 2 was a quantitative study that investigated the overall research question. Participants were three different groups of young female learners (n = 100), ages 9 -12. The participants worked directly with data-based astrophysical 3D models, in short term interventions in formal and informal educational workshop settings. The interventions concatenated concepts driven by current astrophysical data models, providing authentic learning experiences in full and half day formats through coding, 3D modeling, 3D printing and virtual reality, and delivered by women researchers in STEM. The results showed that such interventions that utilized real world data manipulations and 3D applications as part of hands-on activities significantly increased STEM interest for the participants from underserved groups. Results were not significant for increasing spatial ability. The results are discussed in terms of the need to extend exposure to STEM activities and interventions for females younger than middle school, especially in underserved areas, to encourage interest and self-confidence in further STEM education and future careers. The research also offers recommendations on how to better approach the evaluation of and potential improvement of spatial reasoning skills that take into consideration age and cognitive appropriateness. This study holds promise for helping to engage young and underserved females who might otherwise not have confidence in their abilities or even be aware of their potential to contribute in STEM areas
    • …
    corecore