9,738 research outputs found

    Quantification Annotation in ISO 24617-12, Second Draft

    Get PDF
    International audienceThis paper describes the continuation of a project that aims at establishing an interoperable annotation scheme for quantification phenomena as part of the ISO suite of standards for semantic annotation, known as the Semantic Annotation Framework. After a break, caused by the Covid-19 pandemic, the project was relaunched in early 2022 with a second working draft, which deals with certain issues in the annotation of quantification in a more satisfactory way than the original first working draft

    Evaluating Scoped Meaning Representations

    Get PDF
    Semantic parsing offers many opportunities to improve natural language understanding. We present a semantically annotated parallel corpus for English, German, Italian, and Dutch where sentences are aligned with scoped meaning representations in order to capture the semantics of negation, modals, quantification, and presupposition triggers. The semantic formalism is based on Discourse Representation Theory, but concepts are represented by WordNet synsets and thematic roles by VerbNet relations. Translating scoped meaning representations to sets of clauses enables us to compare them for the purpose of semantic parser evaluation and checking translations. This is done by computing precision and recall on matching clauses, in a similar way as is done for Abstract Meaning Representations. We show that our matching tool for evaluating scoped meaning representations is both accurate and efficient. Applying this matching tool to three baseline semantic parsers yields F-scores between 43% and 54%. A pilot study is performed to automatically find changes in meaning by comparing meaning representations of translations. This comparison turns out to be an additional way of (i) finding annotation mistakes and (ii) finding instances where our semantic analysis needs to be improved.Comment: Camera-ready for LREC 201

    Collaborative analysis of multi-gigapixel imaging data using Cytomine

    Get PDF
    Motivation: Collaborative analysis of massive imaging datasets is essential to enable scientific discoveries. Results: We developed Cytomine to foster active and distributed collaboration of multidisciplinary teams for large-scale image-based studies. It uses web development methodologies and machine learning in order to readily organize, explore, share and analyze (semantically and quantitatively) multi-gigapixel imaging data over the internet. We illustrate how it has been used in several biomedical applications

    An ontology to standardize research output of nutritional epidemiology : from paper-based standards to linked content

    Get PDF
    Background: The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology. Methods: Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts. Results: Ontologies for food and nutrition (n = 37), disease and specific population (n = 100), data description (n = 21), research description (n = 35), and supplementary (meta) data description (n = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts. Conclusion: ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology

    A Type-coherent, Expressive Representation as an Initial Step to Language Understanding

    Full text link
    A growing interest in tasks involving language understanding by the NLP community has led to the need for effective semantic parsing and inference. Modern NLP systems use semantic representations that do not quite fulfill the nuanced needs for language understanding: adequately modeling language semantics, enabling general inferences, and being accurately recoverable. This document describes underspecified logical forms (ULF) for Episodic Logic (EL), which is an initial form for a semantic representation that balances these needs. ULFs fully resolve the semantic type structure while leaving issues such as quantifier scope, word sense, and anaphora unresolved; they provide a starting point for further resolution into EL, and enable certain structural inferences without further resolution. This document also presents preliminary results of creating a hand-annotated corpus of ULFs for the purpose of training a precise ULF parser, showing a three-person pairwise interannotator agreement of 0.88 on confident annotations. We hypothesize that a divide-and-conquer approach to semantic parsing starting with derivation of ULFs will lead to semantic analyses that do justice to subtle aspects of linguistic meaning, and will enable construction of more accurate semantic parsers.Comment: Accepted for publication at The 13th International Conference on Computational Semantics (IWCS 2019

    A Data-Oriented Approach to Semantic Interpretation

    Full text link
    In Data-Oriented Parsing (DOP), an annotated language corpus is used as a stochastic grammar. The most probable analysis of a new input sentence is constructed by combining sub-analyses from the corpus in the most probable way. This approach has been succesfully used for syntactic analysis, using corpora with syntactic annotations such as the Penn Treebank. If a corpus with semantically annotated sentences is used, the same approach can also generate the most probable semantic interpretation of an input sentence. The present paper explains this semantic interpretation method, and summarizes the results of a preliminary experiment. Semantic annotations were added to the syntactic annotations of most of the sentences of the ATIS corpus. A data-oriented semantic interpretation algorithm was succesfully tested on this semantically enriched corpus.Comment: 10 pages, Postscript; to appear in Proceedings Workshop on Corpus-Oriented Semantic Analysis, ECAI-96, Budapes
    corecore