1,333 research outputs found

    The security challenges in the IoT enabled cyber-physical systems and opportunities for evolutionary computing & other computational intelligence

    Get PDF
    Internet of Things (IoT) has given rise to the fourth industrial revolution (Industrie 4.0), and it brings great benefits by connecting people, processes and data. However, cybersecurity has become a critical challenge in the IoT enabled cyber physical systems, from connected supply chain, Big Data produced by huge amount of IoT devices, to industry control systems. Evolutionary computation combining with other computational intelligence will play an important role for cybersecurity, such as artificial immune mechanism for IoT security architecture, data mining/fusion in IoT enabled cyber physical systems, and data driven cybersecurity. This paper provides an overview of security challenges in IoT enabled cyber-physical systems and what evolutionary computation and other computational intelligence technology could contribute for the challenges. The overview could provide clues and guidance for research in IoT security with computational intelligence

    Computational intelligence-enabled cybersecurity for the Internet of Things

    Get PDF
    The computational intelligence (CI) based technologies play key roles in campaigning cybersecurity challenges in complex systems such as the Internet of Things (IoT), cyber-physical-systems (CPS), etc. The current IoT is facing increasingly security issues, such as vulnerabilities of IoT systems, malware detection, data security concerns, personal and public physical safety risk, privacy issues, data storage management following the exponential growth of IoT devices. This work aims at investigating the applicability of computational intelligence techniques in cybersecurity for IoT, including CI-enabled cybersecurity and privacy solutions, cyber defense technologies, intrusion detection techniques, and data security in IoT. This paper also attempts to provide new research directions and trends for the increasingly IoT security issues using computational intelligence technologies

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Assessment of Cyber Risks in an IoT-based Supply Chain using a Fuzzy Decision-Making Method

    Get PDF
    Purpose: The Internet of Things (IoT) is a relatively new paradigm that is growing rapidly in modern wireless communication scenarios. The main idea of this concept is the pervasive presence of all kinds of objects around us. This technology is the basis of today's intelligent life and is known as one of the most important sources of big data. Meanwhile, businesses are no exception to this rule and try to use the Internet of Things to make their business smarter. Supply chain management is a goal-based goal of linking business operations to provide a common view of market opportunity. Methodology: Using IoT technology, all major parts of the supply chain, including supply, production, distribution and sales, can be affected. Because this evolutionary technology is intertwined with Internet technology, the use of network-based tools can always create risks for business owners who use these technologies. Therefore, understanding and investigating a variety of cyber risks in this area can It is very important and by understanding their hands, we can prevent many future risks. Linear analysis based on hierarchical analysis is used. Findings: The results show that privacy is very important in interaction with suppliers as well as customers, and therefore those effective measures to deal with these risks can reduce many of the problems caused by this technology. Originality/Value: This paper attend to assessment of cyber risks in an IoT-based supply chain using a fuzzy decision-making method

    The role of big data analytics in industrial Internet of Things

    Get PDF
    Big data production in industrial Internet of Things (IIoT) is evident due to the massive deployment of sensors and Internet of Things (IoT) devices. However, big data processing is challenging due to limited computational, networking and storage resources at IoT device-end. Big data analytics (BDA) is expected to provide operational- and customer-level intelligence in IIoT systems. Although numerous studies on IIoT and BDA exist, only a few studies have explored the convergence of the two paradigms. In this study, we investigate the recent BDA technologies, algorithms and techniques that can lead to the development of intelligent IIoT systems. We devise a taxonomy by classifying and categorising the literature on the basis of important parameters (e.g. data sources, analytics tools, analytics techniques, requirements, industrial analytics applications and analytics types). We present the frameworks and case studies of the various enterprises that have benefited from BDA. We also enumerate the considerable opportunities introduced by BDA in IIoT.We identify and discuss the indispensable challenges that remain to be addressed as future research directions as well
    corecore