292 research outputs found

    Sylvester: Ushering in the Modern Era of Research on Odd Perfect Numbers

    Full text link
    In 1888, James Joseph Sylvester (1814-1897) published a series of papers that he hoped would pave the way for a general proof of the nonexistence of an odd perfect number (OPN). Seemingly unaware that more than fifty years earlier Benjamin Peirce had proved that an odd perfect number must have at least four distinct prime divisors, Sylvester began his fundamental assault on the problem by establishing the same result. Later that same year, he strengthened his conclusion to five. These findings would help to mark the beginning of the modern era of research on odd perfect numbers. Sylvester\u27s bound stood as the best demonstrated until Gradstein improved it by one in 1925. Today, we know that the number of distinct prime divisors that an odd perfect number can have is at least eight. This was demonstrated by Chein in 1979 in his doctoral thesis. However, he published nothing of it. A complete proof consisting of almost 200 manuscript pages was given independently by Hagis. An outline of it appeared in 1980. What motivated Sylvester\u27s sudden interest in odd perfect numbers? Moreover, we also ask what prompted this mathematician who was primarily noted for his work in algebra to periodically direct his attention to famous unsolved problems in number theory? The objective of this paper is to formulate a response to these questions, as well as to substantiate the assertion that much of the modern work done on the subject of odd perfect numbers has as it roots, the series of papers produced by Sylvester in 1888

    Odd Perfect Numbers Have At Least Nine Distinct Prime Factors

    Full text link
    An odd perfect number, N, is shown to have at least nine distinct prime factors. If 3 does not divide N, then N must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.Comment: 17 page

    Euler and the Ongoing Search for Odd Perfect Numbers

    Get PDF
    Leonhard Euler, after proving that every even perfect number has the form given by Euclid, turned his attention to finding odd perfect numbers. Euler established a basic factorization pattern that every odd perfect number must have, and mathematicians have expanded upon this Eulerian form ever since. This paper will present a brief summary of Euler’s result and some recent generalizations. It will also note connections between odd perfect numbers and the abundancy index (the abundancy index of a positive integer is the ratio of the sum of its positive divisors to itself). In particular, finding a positive integer with an abundancy index of 5/3 would finally produce that elusive odd perfect number

    Perfect numbers - a lower bound for an odd perfect number

    Get PDF
    In this work we construct a lower bound for an odd perfect number in terms of the number of its distinct prime factors. We further generalize the formula for any natural number for which the number of its distinct prime factors is known

    Perfect numbers - a lower bound for an odd perfect number

    Get PDF
    In this work we construct a lower bound for an odd perfect number in terms of the number of its distinct prime factors. We further generalize the formula for any natural number for which the number of its distinct prime factors is known

    Multiply perfect numbers of low abundancy

    Get PDF
    The purpose of this thesis is to investigate the properties of multiperfect numbers with low abundancy, and to include the structure, bounds, and density of certain multiperfect numbers. As a significant result of this thesis, an exploration of the structure of an odd 4-perfect number has been made. An extension of Euler’s theorem on the structure of any odd perfect number to odd 2k-perfect numbers has also been obtained. In order to study multiperfect numbers, it is necessary to discuss the factorization of the sum of divisors, in particular for (qe), for prime q. This concept is applied to investigate multiperfect numbers with a so-called flat shape N = 2ap1 · · ·pm. If some prime divisors of N are fixed then there are finitely many flat even 3-perfect numbers. If N is a flat 4-perfect number and the exponent of 2 is not congruent to 1 (mod 12), then the exponent is even. If all odd prime divisors of N are Mersenne primes, where N is even, flat and multiperfect, then N is a perfect number. In more general cases, some necessary conditions for the divisibility by 3 of an even 4-perfect number N = 2ab are obtained, where b is an odd positive integer. Two new ideas, namely flat primes and thin primes, are introduced since these appear often in multiperfect numbers. The relative density of flat primes to all primes is given by 2 times Artin’s constant. An upper bound of the number of thin primes is T(x) less less x log2 x . The sum of the reciprocals of the thin primes is finite
    corecore