11,477 research outputs found

    How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers

    Full text link
    Polarization in American politics has been extensively documented and analyzed for decades, and the phenomenon became all the more apparent during the 2016 presidential election, where Trump and Clinton depicted two radically different pictures of America. Inspired by this gaping polarization and the extensive utilization of Twitter during the 2016 presidential campaign, in this paper we take the first step in measuring polarization in social media and we attempt to predict individuals' Twitter following behavior through analyzing ones' everyday tweets, profile images and posted pictures. As such, we treat polarization as a classification problem and study to what extent Trump followers and Clinton followers on Twitter can be distinguished, which in turn serves as a metric of polarization in general. We apply LSTM to processing tweet features and we extract visual features using the VGG neural network. Integrating these two sets of features boosts the overall performance. We are able to achieve an accuracy of 69%, suggesting that the high degree of polarization recorded in the literature has started to manifest itself in social media as well.Comment: 16 pages, SocInfo 2017, 9th International Conference on Social Informatic

    Information Scrambling in Quantum Neural Networks

    Get PDF
    The quantum neural network is one of the promising applications for near-term noisy intermediate-scale quantum computers. A quantum neural network distills the information from the input wave function into the output qubits. In this Letter, we show that this process can also be viewed from the opposite direction: the quantum information in the output qubits is scrambled into the input. This observation motivates us to use the tripartite information—a quantity recently developed to characterize information scrambling—to diagnose the training dynamics of quantum neural networks. We empirically find strong correlation between the dynamical behavior of the tripartite information and the loss function in the training process, from which we identify that the training process has two stages for randomly initialized networks. In the early stage, the network performance improves rapidly and the tripartite information increases linearly with a universal slope, meaning that the neural network becomes less scrambled than the random unitary. In the latter stage, the network performance improves slowly while the tripartite information decreases. We present evidences that the network constructs local correlations in the early stage and learns large-scale structures in the latter stage. We believe this two-stage training dynamics is universal and is applicable to a wide range of problems. Our work builds bridges between two research subjects of quantum neural networks and information scrambling, which opens up a new perspective to understand quantum neural networks

    Entering the blackboard jungle: canonical dysfunction in conscious machines

    Get PDF
    The central paradigm of Artificial Intelligence is rapidly shifting toward biological models for both robotic devices and systems performing such critical tasks as network management and process control. Here we apply recent mathematical analysis of the necessary conditions for consciousness in humans in an attempt to gain some understanding of the likely canonical failure modes inherent to a broad class of global workspace/blackboard machines designed to emulate biological functions. Similar problems are likely to confront other possible architectures, although their mathematical description may be far less straightforward
    • …
    corecore