1,441 research outputs found

    A large annotated corpus for learning natural language inference

    Full text link
    Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.Comment: To appear at EMNLP 2015. The data will be posted shortly before the conference (the week of 14 Sep) at http://nlp.stanford.edu/projects/snli

    The current approaches in pattern recognition

    Get PDF

    k-NN Embedding Stability for word2vec Hyper-Parametrisation in Scientific Text

    Get PDF
    Word embeddings are increasingly attracting the attention of researchers dealing with semantic similarity and analogy tasks. However, finding the optimal hyper-parameters remains an important challenge due to the resulting impact on the revealed analogies mainly for domain-specific corpora. While analogies are highly used for hypotheses synthesis, it is crucial to optimise word embedding hyper-parameters for precise hypothesis synthesis. Therefore, we propose, in this paper, a methodological approach for tuning word embedding hyper-parameters by using the stability of k-nearest neighbors of word vectors within scientific corpora and more specifically Computer Science corpora with Machine learning adopted as a case study. This approach is tested on a dataset created from NIPS (Conference on Neural Information Processing Systems) publications, and evaluated with a curated ACM hierarchy and Wikipedia Machine Learning outline as the gold standard. Our quantitative and qualitative analysis indicate that our approach not only reliably captures interesting patterns like ``unsupervised_learning is to kmeans as supervised_learning is to knn'', but also captures the analogical hierarchy structure of Machine Learning and consistently outperforms the 61\61\backslash%61%sate-of-the-art embeddings on syntactic accuracy with 68\68\backslash%68%

    Evidence for Information Processing in the Brain

    Get PDF
    Many cognitive and neuroscientists attempt to assign biological functions to brain structures. To achieve this end, scientists perform experiments that relate the physical properties of brain structures to organism-level abilities, behaviors, and environmental stimuli. Researchers make use of various measuring instruments and methodological techniques to obtain this kind of relational evidence, ranging from single-unit electrophysiology and optogenetics to whole brain functional MRI. Each experiment is intended to identify brain function. However, seemingly independent of experimental evidence, many cognitive scientists, neuroscientists, and philosophers of science assume that the brain processes information as a scientific fact. In this work we analyze categories of relational evidence and find that although physical features of specific brain areas selectively covary with external stimuli and abilities, and that the brain shows reliable causal organization, there is no direct evidence supporting the claim that information processing is a natural function of the brain. We conclude that the belief in brain information processing adds little to the science of cognitive science and functions primarily as a metaphor for efficient communication of neuroscientific data

    SemEval-2018 task 3 : irony detection in English tweets

    Get PDF
    This paper presents the first shared task on irony detection: given a tweet, automatic natural language processing systems should determine whether the tweet is ironic (Task A) and which type of irony (if any) is expressed (Task B). The ironic tweets were collected using irony-related hashtags (i.e. #irony, #sarcasm, #not) and were subsequently manually annotated to minimise the amount of noise in the corpus. Prior to distributing the data, hashtags that were used to collect the tweets were removed from the corpus. For both tasks, a training corpus of 3,834 tweets was provided, as well as a test set containing 784 tweets. Our shared tasks received submissions from 43 teams for the binary classification Task A and from 31 teams for the multiclass Task B. The highest classification scores obtained for both subtasks are respectively F1= 0.71 and F1= 0.51 and demonstrate that fine-grained irony classification is much more challenging than binary irony detection

    An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part C: Basic AI topics

    Get PDF
    Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate
    corecore