764 research outputs found

    The W,ZW,Z scale functions kit for first passage problems of spectrally negative Levy processes, and applications to the optimization of dividends

    Get PDF
    First passage problems for spectrally negative L\'evy processes with possible absorbtion or/and reflection at boundaries have been widely applied in mathematical finance, risk, queueing, and inventory/storage theory. Historically, such problems were tackled by taking Laplace transform of the associated Kolmogorov integro-differential equations involving the generator operator. In the last years there appeared an alternative approach based on the solution of two fundamental "two-sided exit" problems from an interval (TSE). A spectrally one-sided process will exit smoothly on one side on an interval, and the solution is simply expressed in terms of a "scale function" WW (Bertoin 1997). The non-smooth two-sided exit (or ruin) problem suggests introducing a second scale function ZZ (Avram, Kyprianou and Pistorius 2004). Since many other problems can be reduced to TSE, researchers produced in the last years a kit of formulas expressed in terms of the "W,ZW,Z alphabet" for a great variety of first passage problems. We collect here our favorite recipes from this kit, including a recent one (94) which generalizes the classic De Finetti dividend problem. One interesting use of the kit is for recognizing relationships between apparently unrelated problems -- see Lemma 3. Last but not least, it turned out recently that once the classic W,ZW,Z are replaced with appropriate generalizations, the classic formulas for (absorbed/ reflected) L\'evy processes continue to hold for: a) spectrally negative Markov additive processes (Ivanovs and Palmowski 2012), b) spectrally negative L\'evy processes with Poissonian Parisian absorbtion or/and reflection (Avram, Perez and Yamazaki 2017, Avram Zhou 2017), or with Omega killing (Li and Palmowski 2017)

    Meromorphic Levy processes and their fluctuation identities

    Get PDF
    The last couple of years has seen a remarkable number of new, explicit examples of the Wiener-Hopf factorization for Levy processes where previously there had been very few. We mention in particular the many cases of spectrally negative Levy processes, hyper-exponential and generalized hyper-exponential Levy processes, Lamperti-stable processes, Hypergeometric processes, Beta-processes and Theta-processes. In this paper we introduce a new family of Levy processes, which we call Meromorphic Levy processes, or just M-processes for short, which overlaps with many of the aforementioned classes. A key feature of the M-class is the identification of their Wiener-Hopf factors as rational functions of infinite degree written in terms of poles and roots of the Levy-Khintchin exponent, all of which appear on the imaginary axis of the complex plane. The specific structure of the M-class Wiener-Hopf factorization enables us to explicitly handle a comprehensive suite of fluctuation identities that concern first passage problems for finite and infinite intervals for both the process itself as well as the resulting process when it is reflected in its infimum. Such identities are of fundamental interest given their repeated occurrence in various fields of applied probability such as mathematical finance, insurance risk theory and queuing theory.Comment: 12 figure

    Overshoots and undershoots of L\'{e}vy processes

    Full text link
    We obtain a new fluctuation identity for a general L\'{e}vy process giving a quintuple law describing the time of first passage, the time of the last maximum before first passage, the overshoot, the undershoot and the undershoot of the last maximum. With the help of this identity, we revisit the results of Kl\"{u}ppelberg, Kyprianou and Maller [Ann. Appl. Probab. 14 (2004) 1766--1801] concerning asymptotic overshoot distribution of a particular class of L\'{e}vy processes with semi-heavy tails and refine some of their main conclusions. In particular, we explain how different types of first passage contribute to the form of the asymptotic overshoot distribution established in the aforementioned paper. Applications in insurance mathematics are noted with emphasis on the case that the underlying L\'{e}vy process is spectrally one sided.Comment: Published at http://dx.doi.org/10.1214/105051605000000647 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore