179 research outputs found

    A novel approach to user controlled ambulation of lower extremity exoskeletons using admittance control paradigm

    Get PDF
    The robotic lower extremity exoskeletons address the ambulatory problems confronting individuals with paraplegia. Paraplegia due to spinal cord injury (SCI) can cause motor deficit to the lower extremities leading to inability to walk. Though wheelchairs provide mobility to the user, they do not provide support to all activities of everyday living to individuals with paraplegia. Current research is addressing the issue of ambulation through the use of wearable exoskeletons that are pre-programmed. There are currently four exoskeletons in the U.S. market: Ekso, Rewalk, REX and Indego. All of the currently available exoskeletons have 2 active Degrees of Freedom (DOF) except for REX which has 5 active DOF. All of them have pre-programmed gait giving the user the ability to initiate a gait but not the ability to control the stride amplitude (height), stride frequency or stride length, and hence restricting users’ ability to navigate across different surfaces and obstacles that are commonly encountered in the community. Most current exoskeletons do not have motors for abduction or adduction to provide users with the option for movement in coronal plane, hence restricting user’s ability to effectively use the exoskeletons. These limitations of currently available pre-programmed exoskeleton models are sought to be overcome by an intuitive, real time user-controlled control mechanism employing admittance control by using hand-trajectory as a surrogate for foot trajectory. Preliminary study included subjects controlling the trajectory of the foot in a virtual environment using their contralateral hand. The study proved that hands could produce trajectories similar to human foot trajectories when provided with haptic and visual feedback. A 10 DOF 1/2 scale biped robot was built to test the control paradigm. The robot has 5 DOF on each leg with 2 DOF at the hip to provide flexion/extension and abduction/adduction, 1 DOF at the knee to provide flexion and 2 DOF at the ankle to provide flexion/extension and inversion/eversion. The control mechanism translates the trajectory of each hand into the trajectory of the ipsilateral foot in real time, thus providing the user with the ability to control each leg in both sagittal and coronal planes using the admittance control paradigm. The efficiency of the control mechanism was evaluated in a study using healthy subjects controlling the robot on a treadmill. A trekking pole was attached to each foot of the biped. The subjects controlled the trajectory of the foot of the biped by applying small forces in the direction of the required movement to the trekking pole through a force sensor. The algorithm converted the forces to Cartesian position of the foot in real time using admittance control; the Cartesian position was converted to joint angles of the hip and knee using inverse kinematics. The kinematics, synchrony and smoothness of the trajectory produced by the biped robot was evaluated at different speeds, with and without obstacles, and compared with typical walking by human subjects on the treadmill. Further, the cognitive load required to control the biped on the treadmill was evaluated and the effect of speed and obstacles with cognitive load on the kinematics, synchrony and smoothness was analyzed

    Universal Dynamics of Damped-Driven Systems: The Logistic Map as a Normal Form for Energy Balance

    Full text link
    Damped-driven systems are ubiquitous in engineering and science. Despite the diversity of physical processes observed in a broad range of applications, the underlying instabilities observed in practice have a universal characterization which is determined by the overall gain and loss curves of a given system. The universal behavior of damped-driven systems can be understood from a geometrical description of the energy balance with a minimal number of assumptions. The assumptions on the energy dynamics are as follows: the energy increases monotonically as a function of increasing gain, and the losses become increasingly larger with increasing energy, i.e. there are many routes for dissipation in the system for large input energy. The intersection of the gain and loss curves define an energy balanced solution. By constructing an iterative map between the loss and gain curves, the dynamics can be shown to be homeomorphic to the logistic map, which exhibits a period doubling cascade to chaos. Indeed, the loss and gain curves allow for a geometrical description of the dynamics through a simple Verhulst diagram (cobweb plot). Thus irrespective of the physics and its complexities, this simple geometrical description dictates the universal set of logistic map instabilities that arise in complex damped-driven systems. More broadly, damped-driven systems are a class of non-equilibrium pattern forming systems which have a canonical set of instabilities that are manifest in practice.Comment: 26 pages, 31 figure

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    A Foot Placement Strategy for Robust Bipedal Gait Control

    Get PDF
    This thesis introduces a new measure of balance for bipedal robotics called the foot placement estimator (FPE). To develop this measure, stability first is defined for a simple biped. A proof of the stability of a simple biped in a controls sense is shown to exist using classical methods for nonlinear systems. With the addition of a contact model, an analytical solution is provided to define the bounds of the region of stability. This provides the basis for the FPE which estimates where the biped must step in order to be stable. By using the FPE in combination with a state machine, complete gait cycles are created without any precalculated trajectories. This includes gait initiation and termination. The bipedal model is then advanced to include more realistic mechanical and environmental models and the FPE approach is verified in a dynamic simulation. From these results, a 5-link, point-foot robot is designed and constructed to provide the final validation that the FPE can be used to provide closed-loop gait control. In addition, this approach is shown to demonstrate significant robustness to external disturbances. Finally, the FPE is shown in experimental results to be an unprecedented estimate of where humans place their feet for walking and jumping, and for stepping in response to an external disturbance

    Stable locomotion control of bipedal walking robots : synchronization with neural oscillators and switching control

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (leaves 105-110).Two novel approaches to stable legged locomotion control (neural-oscillator based control and switching control) are studied for achieving bipedal locomotion stability. Postural stability is realized by structural dynamics shaping, and gait stability is achieved by synchronization with neural oscillators and switching control. A biologically inspired control with neural oscillators (central pattern generator, abbreviated as CPG) is used for global stable locomotion of bipeds based on a mutually inhibited neural oscillator model (Matsuoka, 1985). A systematic design approach is studied for the entrainment between the dynamics of neural oscillators and the natural dynamics of the plant (bipedal skeletal dynamics) in the neural oscillator driven rhythmic control. This design can guarantee global dynamic entrainment, bipedal gait stability and system robustness, which are explored and analyzed using nonlinear system theories. The second control approach, called nonlinear switching control, is proposed to achieve stable locomotion control for a bipedal walking robot. This approach applies nonlinear switching control theory in the locomotion control system so as to ensure bipedal gait stability in the stable limit cycle sense. The switching surface is determined by means of the orbital contraction tuning technique. Both the structural dynamics stability and gait stability are analyzed. The convergence of the walking gait is proved based on nonlinear system theory. Two common features for the above control approaches are that a global state machine based switching module and a closed-loop gait stabilization mechanism are used in both control systems. In neural oscillator driven locomotion control, the sensory feedback signals are switched according to the states of global state machine. However, in the switching control, the global state machine is used to select the appropriate control sub-systems in addition to a contraction tuning mechanism. In both approaches, an explicit closed-loop gait control mechanism is implemented to guarantee the bipedal gait stability. Simulations of 2-D and 3-D bipedal walking robots demonstrate the effectiveness of the above locomotion control approaches. Different simulated experiments are given in the system analysis and evaluations. It has been shown that the above two bipedal locomotion control approaches can be further applied in the real-time control of bipedal walking robotic systems with proper locomotion stability and robustness.by Jianjuen J. Hu.Ph.D
    • …
    corecore