2,542 research outputs found

    I Am The Passenger: How Visual Motion Cues Can Influence Sickness For In-Car VR

    Get PDF
    This paper explores the use of VR Head Mounted Displays (HMDs) in-car and in-motion for the first time. Immersive HMDs are becoming everyday consumer items and, as they offer new possibilities for entertainment and productivity, people will want to use them during travel in, for example, autonomous cars. However, their use is confounded by motion sickness caused in-part by the restricted visual perception of motion conflicting with physically perceived vehicle motion (accelerations/rotations detected by the vestibular system). Whilst VR HMDs restrict visual perception of motion, they could also render it virtually, potentially alleviating sensory conflict. To study this problem, we conducted the first on-road and in motion study to systematically investigate the effects of various visual presentations of the real-world motion of a car on the sickness and immersion of VR HMD wearing passengers. We established new baselines for VR in-car motion sickness, and found that there is no one best presentation with respect to balancing sickness and immersion. Instead, user preferences suggest different solutions are required for differently susceptible users to provide usable VR in-car. This work provides formative insights for VR designers and an entry point for further research into enabling use of VR HMDs, and the rich experiences they offer, when travelling

    The Impact of Hand Movement Velocity on Cognitive Conflict Processing in a 3D Object Selection Task in Virtual Reality.

    Full text link
    Detecting and correcting incorrect body movements is an essential part of everyday interaction with one's environment. The human brain provides a monitoring system that constantly controls and adjusts our actions according to our surroundings. However, when our brain's predictions about a planned action do not match the sensory inputs resulting from that action, cognitive conflict occurs. Much is known about cognitive conflict in 1D/2D environments; however, less is known about the role of movement characteristics associated with cognitive conflict in 3D environment. Hence, we devised an object selection task in a virtual reality (VR) environment to test how the velocity of hand movements impacts human brain responses. From a series of analyses of EEG recordings synchronized with motion capture, we found that the velocity of the participants' hand movements modulated the brain's response to proprioceptive feedback during the task and induced a prediction error negativity (PEN). Additionally, the PEN originates in the anterior cingulate cortex and is itself modulated by the ballistic phase of the hand's movement. These findings suggest that velocity is an essential component of integrating hand movements with visual and proprioceptive information during interactions with real and virtual objects

    Coordination and behavior integration in cooperating simulated robots.

    Get PDF
    This paper shows how a group of evolved physically-linked robots are able to display a variety of highly coordinated basic behaviours (coordinated motion coordinated obstacle avoidance, coordinated light approaching) and to integrate such behaviours into a single coherent behaviour. In this way the group is capable of searching and approaching a light target in an environment scattered with obstacles, furrows, and holes and of dynamically changing its shape in order to pass through narrow passages. The paper analyses in detail the emerged basic behaviours and shows how the coordination of the group relies upon robust self-organising principles based on a traction sensor that allows the single robots to perceive the "average" direction of motion of the rest of the group

    Agency in mid-air interfaces

    Get PDF
    Touchless interfaces allow users to view, control and manipulate digital content without physically touching an interface. They are being explored in a wide range of application scenarios from medical surgery to car dashboard controllers. One aspect of touchless interaction that has not been explored to date is the Sense of Agency (SoA). The SoA refers to the subjective experience of voluntary control over actions in the external world. In this paper, we investigated the SoA in touchless systems using the intentional binding paradigm. We first compare touchless systems with physical interactions and then augmented different types of haptic feedback to explore how different outcome modalities influence users’ SoA. From our experiments, we demonstrated that an intentional binding effect is observed in both physical and touchless interactions with no statistical difference. Additionally, we found that haptic and auditory feedback help to increase SoA compared with visual feedback in touchless interfaces. We discuss these findings and identify design opportunities that take agency into consideration

    Visuomotor coupling shapes a sensorimotor circuit in mouse Cortex for visual flow predictions

    Get PDF
    The emergence of sensory guided behavior depends on sensorimotor coupling during development. How sensorimotor experience shapes neural processing is unclear. Here we show that the coupling between motor output and visual feedback is necessary for the functional development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse. Using a virtual reality system, we reared mice in conditions of normal or random visuomotor coupling. We recorded the activity of identified excitatory and inhibitory L2/3 neurons in response to transient visuomotor mismatches in both groups of mice. Mismatch responses in excitatory neurons were strongly experience dependent and driven by a transient release from inhibition mediated by somatostatin-positive interneurons. These data are consistent with a model in which L2/3 of V1 computes a difference between an inhibitory visual input and an excitatory locomotion-related input, where the balance between these two inputs is finely tuned by visuomotor experience

    Contextual signals in visual cortex

    Get PDF
    Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions

    Videogames: the new GIS?

    Get PDF
    Videogames and GIS have more in common than might be expected. Indeed, it is suggested that videogame technology may not only be considered as a kind of GIS, but that in several important respects its world modelling capabilities out-perform those of most GIS. This chapter examines some of the key differences between videogames and GIS, explores a number of perhaps-surprising similarities between their technologies, and considers which ideas might profitably be borrowed from videogames to improve GIS functionality and usability

    The potential of error-related potentials. Analysis and decoding for control, neuro-rehabilitation and motor substitution

    Get PDF
    Las interfaces cerebro-máquina (BMIs, por sus siglas en inglés) permiten la decodificación de patrones de activación neuronal del cerebro de los usuarios para proporcionar a personas con movilidad severamente limitada, ya sea debido a un accidente o a una enfermedad neurodegenerativa, una forma de establecer una conexión directa entre su cerebro y un dispositivo. En este sentido, las BMIs basadas en técnicas no invasivas, como el electroencefalograma (EEG) han ofrecido a estos usuarios nuevas oportunidades para recuperar el control sobre las actividades de su vida diaria que de otro modo no podrían realizar, especialmente en las áreas de comunicación y control de su entorno.En los últimos años, la tecnología está avanzando a grandes pasos y con ella la complejidad de dispositivos ha incrementado significativamente, ampliando el número de posibilidades para controlar sofisticados dispositivos robóticos, prótesis con numerosos grados de libertad o incluso para la aplicación de complejos patrones de estimulación eléctrica en las propias extremidades paralizadas de un usuario, que le permitan ejecutar movimientos precisos. Sin embargo, la cantidad de información que se puede transmitir entre el cerebro y estos dispositivos sigue siendo muy limitada, tanto por el número como por la velocidad a la que se pueden decodificar los comandos neuronales. Por lo tanto, depender únicamente de las señales neuronales no garantiza un control óptimo y preciso.Para poder sacar el máximo partido de estas tecnologías, el campo de las BMIs adoptó el conocido enfoque de “control-compartido". Esta estrategia de control pretende crear un sistema de cooperación entre el usuario y un dispositivo inteligente, liberando al usuario de las tareas más pesadas requeridas para ejecutar la tarea sin llegar a perder la sensación de estar en control. De esta manera, los usuarios solo necesitan centrar su atención en los comandos de alto nivel (por ejemplo, elegir un elemento específico que agarrar, o elegir el destino final donde moverse) mientras el agente inteligente resuelve problemas de bajo nivel (como planificación de trayectorias, esquivar obstáculos, etc.) que permitan realizar la tarea designada de la manera óptima.En particular, esta tesis gira en torno a una señal neuronal cognitiva de alto nivel originada como la falta de coincidencia entre las expectativas del usuario y las acciones reales ejecutadas por los dispositivos inteligentes. Estas señales, denominadas potenciales de error (ErrPs), se consideran una forma natural de intercomunicar nuestro cerebro con máquinas y, por lo tanto, los usuarios solo requieren monitorizar las acciones de un dispositivo y evaluar mentalmente si este último se comporta correctamente o no. Esto puede verse como una forma de supervisar el comportamiento del dispositivo, en el que la decodificación de estas evaluaciones mentales se utiliza para proporcionar a estos dispositivos retroalimentación directamente relacionada con la ejecución de una tarea determinada para que puedan aprender y adaptarse a las preferencias del usuario.Dado que la respuesta neuronal de ErrP está asociada a un evento exógeno (dispositivo que comete una acción errónea), la mayoría de los trabajos desarrollados han intentado distinguir si una acción es correcta o errónea mediante la explotación de eventos discretos en escenarios bien controlados. Esta tesis presenta el primer intento de cambiar hacia configuraciones asíncronas que se centran en tareas relacionadas con el aumento de las capacidades motoras, con el objetivo de desarrollar interfaces para usuarios con movilidad limitada. En este tipo de configuraciones, dos desafíos importantes son que los eventos correctos o erróneos no están claramente definidos y los usuarios tienen que evaluar continuamente la tarea ejecutada, mientras que la clasificación de las señales EEG debe realizarse de forma asíncrona. Como resultado, los decodificadores tienen que lidiar constantemente con la actividad EEG de fondo, que típicamente conduce a una gran cantidad de errores de detección de firmas de error. Para superar estos desafíos, esta tesis aborda dos líneas principales de trabajo.Primero, explora la neurofisiología de las señales neuronales evocadas asociadas con la percepción de errores durante el uso interactivo de un BMI en escenarios continuos y más realistas.Se realizaron dos estudios para encontrar características alternativas basadas en el dominio de la frecuencia como una forma de lidiar con la alta variabilidad de las señales del EEG. Resultados, revelaron que existe un patrón estable representado como oscilaciones "theta" que mejoran la generalización durante la clasificación. Además, se utilizaron técnicas de aprendizaje automático de última generación para aplicar el aprendizaje de transferencia para discriminar asincrónicamente los errores cuando se introdujeron de forma gradual y no se conoce presumiblemente el inicio que desencadena los ErrPs. Además, los análisis de neurofisiología arrojan algo de luz sobre los mecanismos cognitivos subyacentes que provocan ErrP durante las tareas continuas, lo que sugiere la existencia de modelos neuronales en nuestro cerebro que acumulan evidencia y solo toman una decisión al alcanzar un cierto umbral. En segundo lugar, esta tesis evalúa la implementación de estos potenciales relacionados con errores en tres aplicaciones orientadas al usuario. Estos estudios no solo exploran cómo maximizar el rendimiento de decodificación de las firmas ErrP, sino que también investigan los mecanismos neuronales subyacentes y cómo los diferentes factores afectan las señales provocadas.La primera aplicación de esta tesis presenta una nueva forma de guiar a un robot móvil que se mueve en un entorno continuo utilizando solo potenciales de error como retroalimentación que podrían usarse para el control directo de dispositivos de asistencia. Con este propósito, proponemos un algoritmo basado en el emparejamiento de políticas para el aprendizaje de refuerzo inverso para inferir el objetivo del usuario a partir de señales cerebrales.La segunda aplicación presentada en esta tesis contempla los primeros pasos hacia un BCI híbrido para ejecutar distintos tipos de agarre de objetos, con el objetivo de ayudar a las personas que han perdido la funcionalidad motora de su extremidad superior. Este BMI combina la decodificación del tipo de agarre a partir de señales de EEG obtenidas del espectro de baja frecuencia con los potenciales de error provocados como resultado de la monitorización de movimientos de agarre erróneos. Los resultados muestran que, en efecto los ErrP aparecen en combinaciones de señales motoras originadas a partir de movimientos de agarre consistentes en una única repetición. Además, la evaluación de los diferentes factores involucrados en el diseño de la interfaz híbrida (como la velocidad de los estímulos, el tipo de agarre o la tarea mental) muestra cómo dichos factores afectan la morfología del subsiguiente potencial de error evocado.La tercera aplicación investiga los correlatos neuronales y los procesos cognitivos subyacentes asociados con desajustes somatosensoriales producidos por perturbaciones inesperadas durante la estimulación eléctrica neuromuscular en el brazo de un usuario. Este estudio simula los posibles errores que ocurren durante la terapia de neuro-rehabilitación, en la que la activación simultánea de la estimulación aferente mientras los sujetos se concentran en la realización de una tarea motora es crucial para una recuperación óptima. Los resultados muestran que los errores pueden aumentar la atención del sujeto en la tarea y desencadenar mecanismos de aprendizaje que al mismo tiempo podrían promover la neuroplasticidad motora.En resumen, a lo largo de esta tesis, se han diseñado varios paradigmas experimentales para mejorar la comprensión de cómo se generan los potenciales relacionados con errores durante el uso interactivo de BMI en aplicaciones orientadas al usuario. Se han propuesto diferentes métodos para pasar de la configuración bloqueada en el tiempo a la asíncrona, tanto en términos de decodificación como de percepción de los eventos erróneos; y ha explorado tres aplicaciones relacionadas con el aumento de las capacidades motoras, en las cuales los ErrPs se pueden usar para el control de dispositivos, la sustitución de motores y la neuro-rehabilitación.Brain-machine interfaces (BMIs) allow the decoding of cortical activation patterns from the users brain to provide people with severely limited mobility, due to an accident or disease, a way to establish a direct connection between their brain and a device. In this sense, BMIs based in noninvasive recordings, such as the electroencephalogram (EEG) have o↵ered these users new opportunities to regain control over activities of their daily life that they could not perform otherwise, especially in the areas of communication and control of their environment. Over the past years and with the latest technological advancements, devices have significantly grown on complexity expanding the number of possibilities to control complex robotic devices, prosthesis with numerous degrees of freedom or even to apply compound patterns of electrical stimulation on the subjects own paralyzed extremities to execute precise movements. However, the band-with of communication between brain and devices is still very limited, both in terms of the number and the speed at which neural commands can be decoded, and thus solely relying on neural signals do not guarantee accurate control them. In order to benefit of these technologies, the field of BMIs adopted the well-known approach of shared-control. This strategy intends to create a cooperation system between the user and an intelligent device, liberating the user from the burdensome parts of the task without losing the feeling of being in control. Here, users only need to focus their attention on high-level commands (e.g. choose the final destination to reach, or a specific item to grab) while the intelligent agent resolve low-level problems (e.g. trajectory planning, obstacle avoidance, etc) to perform the designated task in the optimal way. In particular, this thesis revolves around a high-level cognitive neural signal originated as the mismatch between the expectations of the user and the actual actions executed by the intelligent devices. These signals, denoted as error-related potentials (ErrPs), are thought as a natural way to intercommunicate our brain with machines and thus users only require to monitor the actions of a device and mentally assess whether the latter is behaving correctly or not. This can be seen as a way to supervise the device’s behavior, in which the decoding of these mental assessments is used to provide these devices with feedback directly related with the performance of a given task so they can learn and adapt to the user’s preferences. Since the ErrP’s neural response is associated to an exogenous event (device committing an erroneous action), most of the developed works have attempted to distinguish whether an action is correct or erroneous by exploiting discrete events under well-controlled scenarios. This thesis presents the first attempt to shift towards asynchronous settings that focus on tasks related with the augmentation of motor capabilities, with the objective of developing interfaces for users with limited mobility. In this type of setups, two important challenges are that correct or erroneous events are not clearly defined and users have to continuously evaluate the executed task, while classification of EEG signals has to be performed asynchronously. As a result, the decoders have to constantly deal with background EEG activity, which typically leads to a large number of missdetection of error signatures. To overcome these challenges, this thesis addresses two main lines of work. First, it explores the neurophysiology of the evoked neural signatures associated with the perception of errors during the interactive use of a BMI in continuous and more realistic scenarios. Two studies were performed to find alternative features based on the frequency domain as a way of dealing with the high variability of EEG signals. Results, revealed that there exists a stable pattern represented as theta oscillations that enhance generalization during classification. Also, state-of-the-art machine learning techniques were used to apply transfer learning to asynchronously discriminate errors when they were introduced in a gradual fashion and the onset that triggers the ErrPs is not presumably known. Furthermore, neurophsysiology analyses shed some light about the underlying cognitive mechanisms that elicit ErrP during continuous tasks, suggesting the existence of neural models in our brain that accumulate evidence and only take a decision upon reaching a certain threshold. Secondly, this thesis evaluates the implementation of these error-related potentials in three user-oriented applications. These studies not only explore how to maximize the decoding performance of ErrP signatures but also investigate the underlying neural mechanisms and how di↵erent factors a↵ect the elicited signals. The first application of this thesis presents a new way to guide a mobile robot moving in a continuous environment using only error potentials as feedback which could be used for the direct control of assistive devices. With this purpose, we propose an algorithm based on policy matching for inverse reinforcement learning to infer the user goal from brain signals. The second application presented in this thesis contemplates the first steps towards a hybrid BMI for grasping oriented to assist people who have lost motor functionality of their upper-limb. This BMI combines the decoding of the type of grasp from low-frequency EEG signals with error-related potentials elicited as the result of monitoring an erroneous grasping. The results show that ErrPs are elicited in combination of motor signatures from the low-frequency spectrum originated from single repetition grasping tasks and evaluates how di↵erent design factors (such as the speed of the stimuli, type of grasp or mental task) impact the morphology of the subsequent evoked ErrP. The third application investigates the neural correlates and the underlying cognitive processes associated with somatosensory mismatches produced by unexpected disturbances during neuromsucular electrical stimulation on a user’s arm. This study simulates possible errors that occur during neurorehabilitation therapy, in which the simultaneous activation of a↵erent stimulation while the subjects are concentrated in performing a motor task is crucial for optimal recovery. The results showed that errors may increase subject’s attention on the task and trigger learning mechanisms that at the same time could promote motor neuroplasticity. In summary, throughout this thesis, several experimental paradigms have been designed to improve the understanding of how error-related potentials are generated during the interactive use of BMIs in user-oriented applications. Di↵erent methods have been proposed to shift from time-locked to asynchronous settings, both in terms of decoding and perception of the erroneous events; and it has explored three applications related with the augmentation of motor capabilities, in which ErrPs can be used for control of devices, motor substitution and neurorehabilitation.<br /

    Identification and Retraining of Sensorimotor Deficits to Reduce Intention Tremor in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) affects approximately 1 in 1000 Americans and is a significant cause of disability in the United States. One significant contributor to disability in MS is intention tremor, which manifests as an oscillation about the endpoint of a goal-directed movement. A major challenge of treating intention tremor is that the underlying causes of tremor in MS are unknown. In this study, we describe a systems-level computational model and an experimental technique that parameterizes subject-specific deficits in sensory feedback control during goal-directed movements. We used this approach to characterize sensorimotor control and examine how sensory and motor processes are differentially impacted by age and MS. The specific aims of this study were to: 1) characterize age-related changes in sensorimotor control during goal-directed movements; 2) characterize deficits in sensorimotor control in individuals with multiple sclerosis; and 3) determine whether sensorimotor control deficits can be modified and intention tremor reduced using robot-assisted therapy. We show that age-related changes in movement control can be ascribed to increases in sensory noise, leading to slower and less accurate movements. In persons with MS, changes in movement control associated with intention tremor can be attributed to increases in visual response delay that are unaccounted for by predictive neuromotor control mechanisms. Finally, we show that training of goal-directed movements using carefully selected feedback delays can enable subjects to adapt to their increased visual delay, thereby reducing system instability and tremor. The results demonstrate that systems identification techniques provide an informative framework for investigating how neuromotor disease affects motor control and for developing individually targeted rehabilitation strategies to reduce motor disability

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems
    • …
    corecore