221 research outputs found

    Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering

    Get PDF
    Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.R01 DC007683 - NIDCD NIH HHS; R01 DC011277 - NIDCD NIH HHSPublished versio

    Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function

    Get PDF
    Beta oscillations (~13 to 30Hz) have been observed during many perceptual, cognitive and motor processes in a plethora of brain recording studies. While the function of beta oscillations (hereafter ‘beta’ for short) is unlikely to be explained by any single monolithic description, we here discuss several convergent findings. In prefrontal cortex, increased beta appears at the end of a trial when working memory information needs to be erased. A similar clear-out function might apply during the stopping of action and the stopping of long-term memory retrieval (stopping thoughts), where increased prefrontal beta is also observed. A different apparent role for beta in prefrontal cortex occurs during the delay period of working memory tasks: it might serve to maintain the current contents and/or to prevent interference from distraction. We confront the challenge of relating these observations to the large literature on beta recorded from sensorimotor cortex. Potentially, the clear-out of working memory in prefrontal cortex has its counterpart in the post-movement clear-out of the motor plan in sensorimotor cortex. However, recent studies support alternative interpretations. In addition, we flag emerging research on different frequencies of beta and the relationship between beta and single neuron spiking. We also discuss where beta might be generated: basal ganglia, cortex, or both. We end by considering the clinical implications for adaptive deep brain stimulation
    • …
    corecore