87,179 research outputs found

    Field-Trial of a high-budget, filterless, lambda-to-the-user, UDWDM-PON enabled by an innovative class of low-cost coherent transceivers

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We experimentally demonstrate an innovative ultradense wavelength division multiplexing (UDWDM) passive optical networks (PON) that implements the full ¿-to-the-user concept in a filterless distribution network. Key element of the proposed system is a novel class of coherent transceivers, purposely developed with a nonconventional technical approach. Indeed, they are designed and realized to avoid D/A-A/D converter stages and digital signal processing in favor of simple analog processing so that they match system, cost, and power consumption requirements of the access networks without sacrificing the overall performance. These coherent transceivers target different use case scenarios (residential, business, fixed, wireless) still keeping perfect compatibility and co-existence with legacy infrastructures installed to support gray, time division multiplexed PON systems. Moreover, the availability of coherent transceivers of different cost/performance ratios allows for deployments of different quality service grades. In this paper, we report the successful field trial of the proposed systems in a testbed where 14 UDWDM channels (and one legacy E-PON system) are transmitted simultaneously in a dark-fiber network deployed in the city of Pisa (Italy), delivering real-time and/or test traffic. The trial demonstrated filterless operations (each remote node selects individually its own UDWDM channel on a fine 6.25-GHz grid), real-time GbE transmissions (by using either fully analog or light digital signal processing), multirate transmission (1.25 and 10 Gb/s), high optical distribution network loss (18-40 dB) as well as a bidirectional channel monitoring system.Peer ReviewedPostprint (author's final draft

    Classical light vs. nonclassical light: Characterizations and interesting applications

    Full text link
    We briefly review the ideas that have shaped modern optics and have led to various applications of light ranging from spectroscopy to astrophysics, and street lights to quantum communication. The review is primarily focused on the modern applications of classical light and nonclassical light. Specific attention has been given to the applications of squeezed, antibunched, and entangled states of radiation field. Applications of Fock states (especially single photon states) in the field of quantum communication are also discussed.Comment: 32 pages, 3 figures, a review on applications of ligh

    Trusted Noise in Continuous-Variable Quantum Key Distribution: a Threat and a Defense

    Full text link
    We address the role of the phase-insensitive trusted preparation and detection noise in the security of a continuous-variable quantum key distribution, considering the Gaussian protocols on the basis of coherent and squeezed states and studying them in the conditions of Gaussian lossy and noisy channels. The influence of such a noise on the security of Gaussian quantum cryptography can be crucial, even despite the fact that a noise is trusted, due to a strongly nonlinear behavior of the quantum entropies involved in the security analysis. We recapitulate the known effect of the preparation noise in both direct and reverse-reconciliation protocols, as well as the detection noise in the reverse-reconciliation scenario. As a new result, we show the negative role of the trusted detection noise in the direct-reconciliation scheme. We also describe the role of the trusted preparation or detection noise added at the reference side of the protocols in improving the robustness of the protocols to the channel noise, confirming the positive effect for the coherent-state reverse-reconciliation protocol. Finally, we address the combined effect of trusted noise added both in the source and the detector.Comment: 25 pages, 9 figure

    Improving the chromatic dispersion tolerance in long-haul fibre links using the coherent optical orthogonal frequency division multiplexing

    Get PDF
    Numerical simulations of the coherent optical orthogonal frequency division multiplexing modems are undertaken to investigate the effect of the adaptive modulation, the number of sub-carriers, the cyclic prefix (CP) length, the clipping ratio, quantisation bit resolution and the sampling speed of analogue-to-digital converters (ADCs) on the chromatic dispersion (CD) of a single mode fibre (SMF) at data rates up to 80 Gbps. The use of a large number of sub-carriers is more effective in combating fibre dispersion than employing a long CP; moreover, the optimum number of sub-carriers in the presence of both SMF non-linearities and CD has been identified. The authors show that using a high bit resolution ADC with a high clipping ratio, the transmission distance can be increased at specific data rates. Furthermore, it is shown that ADCs with a low sampling speed also improve the system tolerance to the fibre CD. In addition, simulation results show that the use of adaptive modulation schemes improves spectrum usage efficiency, thus resulting in higher tolerance to the CD when compared with the case in which identical modulation formats are adopted across all sub-carriers

    Image processing as state reconstruction in optics

    Full text link
    The image reconstruction of partially coherent light is interpreted as the quantum state reconstruction. The efficient method based on maximum-likelihood estimation is proposed to acquire information from registered intensity measurements affected by noise. The connection with totally incoherent image restoration is pointed out. The feasibility of the method is demonstrated numerically. Spatial and correlation details significantly smaller than the diffraction limit are revealed in the reconstructed pattern.Comment: 10 pages, 5 figure

    Recent advances in exciton based quantum information processing in quantum dot nanostructures

    Get PDF
    Recent experimental developments in the field of semiconductor quantum dot spectroscopy will be discussed. First we report about single quantum dot exciton two-level systems and their coherent properties in terms of single qubit manipulations. In the second part we report on coherent quantum coupling in a prototype "two-qubit" system consisting of a vertically stacked pair of quantum dots. The interaction can be tuned in such quantum dot molecule devices using an applied voltage as external parameter.Comment: 37 pages, 15 figures, submitted to New Journal of Physics, focus issue on Solid State Quantum Information, added reference
    • 

    corecore