3,741 research outputs found

    Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses

    Get PDF
    We report experiments on the ablation of arsenic trisulphide and silicon using high-repetition-rate (megahertz) trains of picosecond pulses. In the case of arsenic trisulphide, the average single pulse fluence at ablation threshold is found to be >100 times lower when pulses are delivered as a 76-MHz train compared with the case of a solitary pulse. For silicon, however, the threshold for a 4.1-MHz train equals the value for a solitary pulse. A model of irradiation by high-repetition-rate pulse trains demonstrates that for arsenic trisulphide energy accumulates in the target surface from several hundred successive pulses, lowering the ablation threshold and causing a change from the laser-solid to laser-plasma mode as the surface temperature increases

    Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz

    Get PDF
    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×10115 \times 10^{11} photons/second in a 5% bandwidth and the brilliance is 2×1012photons/(sec mm2 mrad2 0.1%)2 \times 10^{12}\mathrm{photons/(sec\ mm^2\ mrad^2\ 0.1\%)} in pulses with RMS pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.Comment: 25 pages, 24 figures, 54 reference

    Green-pumped, picosecond MgO:PPLN optical parametric oscillator

    No full text
    We investigate the performance of a magnesium-oxide-doped periodically poled lithium niobate crystal (MgO:PPLN) in an optical parametric oscillator (OPO) synchronously-pumped by 530nm, 20ps, 230MHz pulses with an average power of up to 2W from a frequency-doubled, gain-switched laser diode seed and a multi-stage Yb:fiber amplifier system. The OPO produces ~165mW (signal, 845nm) and ~107mW (idler, 1421nm) of average power for ~1W of pump power and can be tuned from ~800nm to 900nm (signal) and 1.28µm to 1.54µm (idler). Observations of photo-refraction and green-induced infrared absorption (GRIIRA) in different operational regimes of the MgO:PPLN OPO are described and the role of peak intensity and average power are investigated, both with the aim to find the optimal operating regime for pulsed systems

    Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs

    Get PDF
    We advance all optical spin noise spectroscopy (SNS) in semiconductors to detection bandwidths of several hundred gigahertz by employing an ingenious scheme of pulse trains from ultrafast laser oscillators as an optical probe. The ultrafast SNS technique avoids the need for optical pumping and enables nearly perturbation free measurements of extremely short spin dephasing times. We employ the technique to highly n-doped bulk GaAs where magnetic field dependent measurements show unexpected large g-factor fluctuations. Calculations suggest that such large g-factor fluctuations do not necessarily result from extrinsic sample variations but are intrinsically present in every doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure

    High-Brightness Solid-State Lasers for Compact Short-Wavelength Sources

    Get PDF
    Various types of compact short-wavelength sources are emerging in the region from EUV to hard X-ray and further to gamma ray. These high-energy photons are usually accessible in a large-scale facility such as SR or FEL, and the compactness of these new technologies provides new possibilities for broader applications in dedicated laboratories or factories. Laser-produced plasma is used for soft X-ray laser and high average power EUV sources for lithography. Laser Compton short-wavelength sources are now entering into practical applications in medical imaging. The performance of these sources critically depends on the laser driver performance. This chapter describes the recent progress of high-brightness, short-pulse solid-state laser technology in close relation to these new compact short-wavelength sources. Pulsed picosecond thin disc laser progress is reviewed with kW average power specifications. Cryogenic laser is reported for the advantage of higher beam quality in large-pulse energy operation

    The Geoscience Laser Altimetry/Ranging System (GLARS)

    Get PDF
    The Geoscience Laser Altimetry Ranging System (GLARS) is a highly precise distance measurement system to be used for making extremely accurate geodetic observations from a space platform. It combines the attributes of a pointable laser ranging system making observations to cube corner retroreflectors placed on the ground with those of a nadir looking laser altimeter making height observations to ground, ice sheet, and oceanic surfaces. In the ranging mode, centimeter-level precise baseline and station coordinate determinations will be made on grids consisting of 100 to 200 targets separated by distances from a few tens of kilometers to about 1000 km. These measurements will be used for studies of seismic zone crustal deformations and tectonic plate motions. Ranging measurements will also be made to a coarser, but globally distributed array of retroreflectors for both precise geodetic and orbit determination applications. In the altimetric mode, relative height determinations will be obtained with approximately decimeter vertical precision and 70 to 100 meter horizontal resolution. The height data will be used to study surface topography and roughness, ice sheet and lava flow thickness, and ocean dynamics. Waveform digitization will provide a measure of the vertical extent of topography within each footprint. The planned Earth Observing System is an attractive candidate platform for GLARS since the GLAR data can be used both for direct analyses and for highly precise orbit determination needed in the reduction of data from other sensors on the multi-instrument platform. (1064, 532, and 355 nm)Nd:YAG laser meets the performance specifications for the system
    • …
    corecore