245 research outputs found

    Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra

    Full text link
    [EN] Based on the conditions ab(2) = 0 and b pi(ab) is an element of A(d), we derive that (ab)(n), (ba)(n), and ab + ba are all generalized Drazin invertible in a Banach algebra A, where n is an element of N and a and b are elements of A. By using these results, some results on the symmetry representations for the generalized Drazin inverse of ab + ba are given. We also consider that additive properties for the generalized Drazin inverse of the sum a + b.This work was supported by the National Natural Science Foundation of China (grant number: 11361009, 61772006,11561015), the Special Fund for Science and Technological Bases and Talents of Guangxi (grant number: 2016AD05050, 2018AD19051), the Special Fund for Bagui Scholars of Guangxi (grant number: 2016A17), the High level innovation teams and distinguished scholars in Guangxi Universities (grant number: GUIJIAOREN201642HAO), the Natural Science Foundation of Guangxi (grant number: 2017GXNSFBA198053, 2018JJD110003), and the open fund of Guangxi Key laboratory of hybrid computation and IC design analysis (grant number: HCIC201607).Qin, Y.; Liu, X.; Benítez López, J. (2019). Some Results on the Symmetric Representation of the Generalized Drazin Inverse in a Banach Algebra. Symmetry (Basel). 11(1):1-9. https://doi.org/10.3390/sym11010105S19111González, N. C. (2005). Additive perturbation results for the Drazin inverse. Linear Algebra and its Applications, 397, 279-297. doi:10.1016/j.laa.2004.11.001Zhang, X., & Chen, G. (2006). The computation of Drazin inverse and its application in Markov chains. Applied Mathematics and Computation, 183(1), 292-300. doi:10.1016/j.amc.2006.05.076Castro-González, N., Dopazo, E., & Martínez-Serrano, M. F. (2009). On the Drazin inverse of the sum of two operators and its application to operator matrices. Journal of Mathematical Analysis and Applications, 350(1), 207-215. doi:10.1016/j.jmaa.2008.09.035Qiao, S., Wang, X.-Z., & Wei, Y. (2018). Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse. Linear Algebra and its Applications, 542, 101-117. doi:10.1016/j.laa.2017.03.014Stanimirovic, P. S., Zivkovic, I. S., & Wei, Y. (2015). Recurrent Neural Network for Computing the Drazin Inverse. IEEE Transactions on Neural Networks and Learning Systems, 26(11), 2830-2843. doi:10.1109/tnnls.2015.2397551Koliha, J. J. (1996). A generalized Drazin inverse. Glasgow Mathematical Journal, 38(3), 367-381. doi:10.1017/s0017089500031803Hartwig, R. E., Wang, G., & Wei, Y. (2001). Some additive results on Drazin inverse. Linear Algebra and its Applications, 322(1-3), 207-217. doi:10.1016/s0024-3795(00)00257-3Djordjević, D. S., & Wei, Y. (2002). Additive results for the generalized Drazin inverse. Journal of the Australian Mathematical Society, 73(1), 115-126. doi:10.1017/s1446788700008508Liu, X., Xu, L., & Yu, Y. (2010). The representations of the Drazin inverse of differences of two matrices. Applied Mathematics and Computation, 216(12), 3652-3661. doi:10.1016/j.amc.2010.05.016Yang, H., & Liu, X. (2011). The Drazin inverse of the sum of two matrices and its applications. Journal of Computational and Applied Mathematics, 235(5), 1412-1417. doi:10.1016/j.cam.2010.08.027Harte, R. (1992). On generalized inverses in C*-algebras. Studia Mathematica, 103(1), 71-77. doi:10.4064/sm-103-1-71-77Djordjevic, D. S., & Stanimirovic, P. S. (2001). On the Generalized Drazin Inverse and Generalized Resolvent. Czechoslovak Mathematical Journal, 51(3), 617-634. doi:10.1023/a:1013792207970Cvetković-Ilić, D. S., Djordjević, D. S., & Wei, Y. (2006). Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra and its Applications, 418(1), 53-61. doi:10.1016/j.laa.2006.01.015Liu, X., Qin, X., & Benítez, J. (2016). New additive results for the generalized Drazin inverse in a Banach algebra. Filomat, 30(8), 2289-2294. doi:10.2298/fil1608289lMosić, D., Zou, H., & Chen, J. (2017). The generalized Drazin inverse of the sum in a Banach algebra. Annals of Functional Analysis, 8(1), 90-105. doi:10.1215/20088752-3764461González, N. C., & Koliha, J. J. (2004). New additive results for the g-Drazin inverse. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 134(6), 1085-1097. doi:10.1017/s0308210500003632Mosić, D. (2014). A note on Cline’s formula for the generalized Drazin inverse. Linear and Multilinear Algebra, 63(6), 1106-1110. doi:10.1080/03081087.2014.92296

    Additive Property of Drazin Invertibility of Elements

    Full text link
    In this article, we investigate additive properties of the Drazin inverse of elements in rings and algebras over an arbitrary field. Under the weakly commutative condition of ab=λbaab = \lambda ba, we show that aba-b is Drazin invertible if and only if aaD(ab)bbDaa^{D}(a-b)bb^{D} is Drazin invertible. Next, we give explicit representations of (a+b)D(a+b)^{D}, as a function of a,b,aDa, b, a^{D} and bDb^{D}, under the conditions a3b=baa^{3}b = ba and b3a=abb^{3}a = ab.Comment: 17 page

    The Drazin inverse of the linear combinations of two idempotents in the Banach algebra

    Get PDF
    AbstractIn this paper, some Drazin inverse representations of the linear combinations of two idempotents in a Banach algebra are obtained. Moreover, we present counter-examples to and establish the corrected versions of two theorems by Cvetković-Ilić and Deng

    Some Results for the Drazin Inverses of the Sum of Two Matrices and Some Block Matrices

    Get PDF
    We give a formula of (P+Q)D under the conditions P2Q+QPQ=0, P3Q=0, and PQPQ=0. Then, we apply it to give some expressions for the Drazin inverse of block matrix M=(ABCD) (A and D are square matrices) under some conditions, generalizing some recent results in the literature. Finally, numerical examples are given to illustrate our results

    New additive results for the generalized Drazin inverse

    Get PDF
    AbstractIn this paper, we investigate additive properties of generalized Drazin inverse of two Drazin invertible linear operators in Banach spaces. Under the commutative condition of PQ=QP, we give explicit representations of the generalized Drazin inverse (P+Q)d in term of P, Pd, Q and Qd. We consider some applications of our results to the perturbation of the Drazin inverse and analyze a number of special cases

    Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

    Full text link
    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, often the linear operator techniques that one would then use simply fail since the operators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear operators. We circumvent it by developing a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. It extends the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics are relevant, including memoryful stochastic processes, open non unitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator. In particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a general method to construct it. We provide new formulae for constructing projection operators and delineate the relations between projection operators, eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples.Comment: 29 pages, 4 figures, expanded historical citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/bst.ht

    Representations and geometrical properties of generalized inverses over fields

    Get PDF
    In this paper, as a generalization of Urquhart’s formulas, we present a full description of the sets of inner inverses and (B, C)-inverses over an arbitrary field. In addition, identifying the matrix vector space with an affine space, we analyze geometrical properties of the main generalized inverse sets. We prove that the set of inner inverses, and the set of (B, C)-inverses, form affine subspaces and we study their dimensions. Furthermore, under some hypotheses, we prove that the set of outer inverses is not an affine subspace but it is an affine algebraic variety. We also provide lower and upper bounds for the dimension of the outer inverse set.Agencia Estatal de InvestigaciónUniversidad de Alcal

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht
    corecore