1,244 research outputs found

    Curve Diagrams, Laminations, and the Geometric Complexity of Braids

    Full text link
    Braids can be represented geometrically as curve diagrams. The geometric complexity of a braid is the minimal complexity of a curve diagram representing it. We introduce and study the corresponding notion of geometric generating function. We compute explicitly the geometric generating function for the group of braids on three strands and prove that it is neither rational nor algebraic, nor even holonomic. This result may appear as counterintuitive. Indeed, the standard complexity (due to the Artin presentation of braid groups) is algorithmically harder to compute than the geometric complexity, yet the associated generating function for the group of braids on three strands is rational.Comment: 33 pages, 19 figure

    Braided magnetic fields:equilibria, relaxation and heating

    Get PDF
    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity - as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor's hypothesis.Comment: To appear in Plasma Physics and Controlled Fusio

    Helical Chirality: a Link between Local Interactions and Global Topology in DNA

    Get PDF
    DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg2+ sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology

    Non-classical computing: feasible versus infeasible

    Get PDF
    Physics sets certain limits on what is and is not computable. These limits are very far from having been reached by current technologies. Whilst proposals for hypercomputation are almost certainly infeasible, there are a number of non classical approaches that do hold considerable promise. There are a range of possible architectures that could be implemented on silicon that are distinctly different from the von Neumann model. Beyond this, quantum simulators, which are the quantum equivalent of analogue computers, may be constructable in the near future

    Modelling and experimental investigation of mechanical performances of braided polyamide sutures

    Get PDF
    This work aims at predicting the braiding parameters which can lead to sutures having optimal mechanical performances for specific surgical intervention. The braiding parameters include yarn count and machine settings. Effects of yarns characteristics and machine parameters on a polyamide braid mechanical properties have also been studied. Yarn count and sheet yarn number are proven to be the most significant factors. Predictive models of the suture mechanical responses based on yarn characteristics and machine parameters have been developed and it shows very significant level. Using simultaneous contours plots, manufacturing conditions permitting to obtain optimal mechanical properties meeting the requirements of the US Pharmacopeia for the diameter and tensile strength are determined for sutures having USP number from 3-0 to 2

    Braids via term rewriting

    Get PDF
    We present a brief introduction to braids, in particular simple positive braids, with a double emphasis: first, we focus on term rewriting techniques, in particular, reduction diagrams and decreasing diagrams. The second focus is our employment of the colored braid notation next to the more familiar Artin notation. Whereas the latter is a relative, position dependent, notation, the former is an absolute notation that seems more suitable for term rewriting techniques such as symbol tracing. Artin's equations translate in this notation to simple word inversions. With these points of departure we treat several basic properties of positive braids, in particular related to the word problem, confluence property, projection equivalence, and the congruence property. In our introduction the beautiful diamond known as the permutohedron plays a decisive role
    corecore