4,275 research outputs found

    On the model-checking of monadic second-order formulas with edge set quantifications

    Get PDF
    AbstractWe extend clique-width to graphs with multiple edges. We obtain fixed-parameter tractable model-checking algorithms for certain monadic second-order graph properties that depend on the multiplicities of edges, with respect to this “new” clique-width. We define special tree-width, the variant of tree-width relative to tree-decompositions such that the boxes that contain a vertex are on a path originating from some fixed node. We study its main properties. This definition is motivated by the construction of finite automata associated with monadic second-order formulas using edge set quantifications. These automata yield fixed-parameter linear algorithms with respect to tree-width for the model-checking of these formulas. Their construction is much simpler for special tree-width than for tree-width, for reasons that we explain

    Towards Exact Structural Thresholds for Parameterized Complexity

    Get PDF
    Parameterized complexity seeks to optimally use input structure to obtain faster algorithms for NP-hard problems. This has been most successful for graphs of low treewidth, i.e., graphs decomposable by small separators: Many problems admit fast algorithms relative to treewidth and many of them are optimal under the Strong Exponential-Time Hypothesis (SETH). Fewer such results are known for more general structure such as low clique-width (decomposition by large and dense but structured separators) and more restrictive structure such as low deletion distance to some sparse graph class. Despite these successes, such results remain "islands" within the realm of possible structure. Rather than adding more islands, we seek to determine the transitions between them, that is, we aim for structural thresholds where the complexity increases as input structure becomes more general. Going from deletion distance to treewidth, is a single deletion set to a graph with simple components enough to yield the same lower bound as for treewidth or does it take many disjoint separators? Going from treewidth to clique-width, how much more density entails the same complexity as clique-width? Conversely, what is the most restrictive structure that yields the same lower bound? For treewidth, we obtain both refined and new lower bounds that apply already to graphs with a single separator X such that G-X has treewidth at most r = ?(1), while G has treewidth |X|+?(1). We rule out algorithms running in time ?^*((r+1-?)^k) for Deletion to r-Colorable parameterized by k = |X|; this implies the same lower bound relative to treedepth and (hence) also to treewidth. It specializes to ?^*((3-?)^k) for Odd Cycle Transversal where tw(G-X) ? r = 2 is best possible. For clique-width, an extended version of the above reduction rules out time ?^*((4-?)^k), where X is allowed to be a possibly large separator consisting of k (true) twinclasses, while the treewidth of G - X remains r; this is proved also for the more general Deletion to r-Colorable and it implies the same lower bound relative to clique-width. Further results complement what is known for Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched by existing and newly designed algorithms

    Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths

    Get PDF
    Computing all-pairs shortest paths is a fundamental and much-studied problem with many applications. Unfortunately, despite intense study, there are still no significantly faster algorithms for it than the O(n3)\mathcal{O}(n^3) time algorithm due to Floyd and Warshall (1962). Somewhat faster algorithms exist for the vertex-weighted version if fast matrix multiplication may be used. Yuster (SODA 2009) gave an algorithm running in time O(n2.842)\mathcal{O}(n^{2.842}), but no combinatorial, truly subcubic algorithm is known. Motivated by the recent framework of efficient parameterized algorithms (or "FPT in P"), we investigate the influence of the graph parameters clique-width (cwcw) and modular-width (mwmw) on the running times of algorithms for solving All-Pairs Shortest Paths. We obtain efficient (and combinatorial) parameterized algorithms on non-negative vertex-weighted graphs of times O(cw2n2)\mathcal{O}(cw^2n^2), resp. O(mw2n+n2)\mathcal{O}(mw^2n + n^2). If fast matrix multiplication is allowed then the latter can be improved to O(mw1.842n+n2)\mathcal{O}(mw^{1.842}n + n^2) using the algorithm of Yuster as a black box. The algorithm relative to modular-width is adaptive, meaning that the running time matches the best unparameterized algorithm for parameter value mwmw equal to nn, and they outperform them already for mw∈O(n1−Δ)mw \in \mathcal{O}(n^{1 - \varepsilon}) for any Δ>0\varepsilon > 0

    Recovering sparse graphs

    Get PDF
    We construct a fixed parameter algorithm parameterized by d and k that takes as an input a graph G' obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets of the vertex set of G and outputs a graph H such that G and H agree on all but f(d,k) vertices. Our work is motivated by the first order model checking in graph classes that are first order interpretable in classes of sparse graphs. We derive as a corollary that if G_0 is a graph class with bounded expansion, then the first order model checking is fixed parameter tractable in the class of all graphs that can obtained from a graph G from G_0 by complementing on at most k arbitrary subsets of the vertex set of G; this implies an earlier result that the first order model checking is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded maximum degree
    • 

    corecore