47,161 research outputs found

    Random recursive trees: A boundary theory approach

    Get PDF
    We show that an algorithmic construction of sequences of recursive trees leads to a direct proof of the convergence of random recursive trees in an associated Doob-Martin compactification; it also gives a representation of the limit in terms of the input sequence of the algorithm. We further show that this approach can be used to obtain strong limit theorems for various tree functionals, such as path length or the Wiener index

    The Meir-Keeler Fixed Point Theorem for Quasi-Metric Spaces and Some Consequences

    Full text link
    [EN] We obtain quasi-metric versions of the famous Meir¿Keeler fixed point theorem from which we deduce quasi-metric generalizations of Boyd¿Wong¿s fixed point theorem. In fact, one of these generalizations provides a solution for a question recently raised in the paper ¿On the fixed point theory in bicomplete quasi-metric spaces¿, J. Nonlinear Sci. Appl. 2016, 9, 5245¿5251. We also give an application to the study of existence of solution for a type of recurrence equations associated to certain nonlinear difference equationsPedro Tirado acknowledges the support of the Ministerio de Ciencia, Innovación y Universidades, under grant PGC2018-095709-B-C21Romaguera Bonilla, S.; Tirado Peláez, P. (2019). The Meir-Keeler Fixed Point Theorem for Quasi-Metric Spaces and Some Consequences. Symmetry (Basel). 11(6):1-10. https://doi.org/10.3390/sym11060741S110116Alegre, C., Dağ, H., Romaguera, S., & Tirado, P. (2016). On the fixed point theory in bicomplete quasi-metric spaces. Journal of Nonlinear Sciences and Applications, 09(08), 5245-5251. doi:10.22436/jnsa.009.08.10Boyd, D. W., & Wong, J. S. W. (1969). On nonlinear contractions. Proceedings of the American Mathematical Society, 20(2), 458-458. doi:10.1090/s0002-9939-1969-0239559-9Meir, A., & Keeler, E. (1969). A theorem on contraction mappings. Journal of Mathematical Analysis and Applications, 28(2), 326-329. doi:10.1016/0022-247x(69)90031-6Aydi, H., & Karapinar, E. (2012). A Meir-Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-26Chen, C.-M. (2012). Fixed point theory for the cyclic weaker Meir-Keeler function in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-17Chen, C.-M. (2012). Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory and Applications, 2012(1). doi:10.1186/1687-1812-2012-41Chen, C.-M., & Karapınar, E. (2013). Fixed point results for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. Journal of Inequalities and Applications, 2013(1). doi:10.1186/1029-242x-2013-410Choban, M. M., & Berinde, V. (2017). Multiple fixed point theorems for contractive and Meir-Keeler type mappings defined on partially ordered spaces with a distance. Applied General Topology, 18(2), 317. doi:10.4995/agt.2017.7067Di Bari, C., Suzuki, T., & Vetro, C. (2008). Best proximity points for cyclic Meir–Keeler contractions. Nonlinear Analysis: Theory, Methods & Applications, 69(11), 3790-3794. doi:10.1016/j.na.2007.10.014Jachymski, J. (1995). Equivalent Conditions and the Meir-Keeler Type Theorems. Journal of Mathematical Analysis and Applications, 194(1), 293-303. doi:10.1006/jmaa.1995.1299Karapinar, E., Czerwik, S., & Aydi, H. (2018). (α,ψ)-Meir-Keeler Contraction Mappings in Generalized b-Metric Spaces. Journal of Function Spaces, 2018, 1-4. doi:10.1155/2018/3264620Mustafa, Z., Aydi, H., & Karapınar, E. (2013). Generalized Meir–Keeler type contractions on G-metric spaces. Applied Mathematics and Computation, 219(21), 10441-10447. doi:10.1016/j.amc.2013.04.032Nashine, H. K., & Romaguera, S. (2013). Fixed point theorems for cyclic self-maps involving weaker Meir-Keeler functions in complete metric spaces and applications. Fixed Point Theory and Applications, 2013(1). doi:10.1186/1687-1812-2013-224Park, S., & Bae, J. S. (1981). Extensions of a fixed point theorem of Meir and Keeler. Arkiv för Matematik, 19(1-2), 223-228. doi:10.1007/bf02384479Piątek, B. (2011). On cyclic Meir–Keeler contractions in metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 74(1), 35-40. doi:10.1016/j.na.2010.08.010Rhoades, B. ., Park, S., & Moon, K. B. (1990). On generalizations of the Meir-Keeler type contraction maps. Journal of Mathematical Analysis and Applications, 146(2), 482-494. doi:10.1016/0022-247x(90)90318-aSamet, B. (2010). Coupled fixed point theorems for a generalized Meir–Keeler contraction in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 72(12), 4508-4517. doi:10.1016/j.na.2010.02.026Samet, B., Vetro, C., & Yazidi, H. (2013). A fixed point theorem for a Meir-Keeler type contraction through rational expression. Journal of Nonlinear Sciences and Applications, 06(03), 162-169. doi:10.22436/jnsa.006.03.02Schellekens, M. (1995). The Smyth Completion. Electronic Notes in Theoretical Computer Science, 1, 535-556. doi:10.1016/s1571-0661(04)00029-5Romaguera, S., & Schellekens, M. (1999). Quasi-metric properties of complexity spaces. Topology and its Applications, 98(1-3), 311-322. doi:10.1016/s0166-8641(98)00102-3García-Raffi, L. M., Romaguera, S., & Schellekens, M. P. (2008). Applications of the complexity space to the General Probabilistic Divide and Conquer Algorithms. Journal of Mathematical Analysis and Applications, 348(1), 346-355. doi:10.1016/j.jmaa.2008.07.026Mohammadi, Z., & Valero, O. (2016). A new contribution to the fixed point theory in partial quasi-metric spaces and its applications to asymptotic complexity analysis of algorithms. Topology and its Applications, 203, 42-56. doi:10.1016/j.topol.2015.12.074Romaguera, S., & Tirado, P. (2011). The complexity probabilistic quasi-metric space. Journal of Mathematical Analysis and Applications, 376(2), 732-740. doi:10.1016/j.jmaa.2010.11.056Romaguera, S., & Tirado, P. (2015). A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem. Fixed Point Theory and Applications, 2015(1). doi:10.1186/s13663-015-0431-1Stevo, S. (2002). The recursive sequence xn+1 = g(xn, xn−1)/(A + xn). Applied Mathematics Letters, 15(3), 305-308. doi:10.1016/s0893-9659(01)00135-
    • …
    corecore