4,027 research outputs found

    Enumeration of self-avoiding walks on the square lattice

    Full text link
    We describe a new algorithm for the enumeration of self-avoiding walks on the square lattice. Using up to 128 processors on a HP Alpha server cluster we have enumerated the number of self-avoiding walks on the square lattice to length 71. Series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and mean-square distance of monomers from the end points have been derived to length 59. Analysis of the resulting series yields accurate estimates of the critical exponents γ\gamma and ν\nu confirming predictions of their exact values. Likewise we obtain accurate amplitude estimates yielding precise values for certain universal amplitude combinations. Finally we report on an analysis giving compelling evidence that the leading non-analytic correction-to-scaling exponent Δ1=3/2\Delta_1=3/2.Comment: 24 pages, 6 figure

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    A numerical adaptation of SAW identities from the honeycomb to other 2D lattices

    Full text link
    Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by Nienhuis that the connective constant of self-avoiding walks on the honeycomb lattice is 2+2.\sqrt{2+\sqrt{2}}. A key identity used in that proof depends on the existence of a parafermionic observable for self-avoiding walks on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed on the honeycomb lattice persist on other lattices. This permits the accurate estimation, though not an exact evaluation, of certain critical amplitudes, as well as critical points, for these lattices. For the honeycomb lattice an exact amplitude for loops is proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis, giving greater precision. Explanation of why we observe what we do. Extra reference

    Nivat's conjecture holds for sums of two periodic configurations

    Full text link
    Nivat's conjecture is a long-standing open combinatorial problem. It concerns two-dimensional configurations, that is, maps Z2→A\mathbb Z^2 \rightarrow \mathcal A where A\mathcal A is a finite set of symbols. Such configurations are often understood as colorings of a two-dimensional square grid. Let Pc(m,n)P_c(m,n) denote the number of distinct m×nm \times n block patterns occurring in a configuration cc. Configurations satisfying Pc(m,n)≤mnP_c(m,n) \leq mn for some m,n∈Nm,n \in \mathbb N are said to have low rectangular complexity. Nivat conjectured that such configurations are necessarily periodic. Recently, Kari and the author showed that low complexity configurations can be decomposed into a sum of periodic configurations. In this paper we show that if there are at most two components, Nivat's conjecture holds. As a corollary we obtain an alternative proof of a result of Cyr and Kra: If there exist m,n∈Nm,n \in \mathbb N such that Pc(m,n)≤mn/2P_c(m,n) \leq mn/2, then cc is periodic. The technique used in this paper combines the algebraic approach of Kari and the author with balanced sets of Cyr and Kra.Comment: Accepted for SOFSEM 2018. This version includes an appendix with proofs. 12 pages + references + appendi
    • …
    corecore