298 research outputs found

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively

    Novel techniques for the design and practical realization of switched-capacitor circuits in deep-submicron CMOS technologies

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaSwitches presenting high linearity are more and more required in switched-capacitor circuits,namely in 12 to 16 bits resolution analog-to-digital converters. The CMOS technology evolves continuously towards lower supply voltages and, simultaneously, new design techniques are necessary to fulfill the realization of switches exhibiting a high dynamic range and a distortion compatible with referred resolutions. Moreover, with the continuously downing of the sizes, the physic constraints of the technology must be considered to avoid the excessive stress of the devices when relatively high voltages are applied to the gates. New switch-linearization techniques, with high reliability, must be necessarily developed and demonstrated in CMOS integrated circuits. Also, the research of new structures of circuits with switched-capacitor is permanent. Simplified and efficient structures are mandatory, adequate to the new demands emerging from the proliferation of portable equipments, necessarily with low energy consumption while assuring high performance and multiple functions. The work reported in this Thesis comprises these two areas. The behavior of the switches under these new constraints is analyzed, being a new and original solution proposed, in order to maintain the performance. Also, proposals for the application of simpler clock and control schemes are presented, and for the use of open-loop structures and amplifiers with localfeedback. The results, obtained in laboratory or by simulation, assess the feasibility of the presented proposals

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF

    700mV low power low noise implantable neural recording system design

    Get PDF
    This dissertation presents the work for design and implementation of a low power, low noise neural recording system consisting of Bandpass Amplifier and Pipelined Analog to Digital Converter (ADC) for recording neural signal activities. A low power, low noise two stage neural amplifier for use in an intelligent Radio-Frequency Identification (RFID) based on folded cascode Operational Transconductance Amplifier (OTA) is utilized to amplify the neural signals. The optimization of the number of amplifier stages is discussed to achieve the minimum power and area consumption. The amplifier power supply is 0.7V. The midband gain of amplifier is 58.4dB with a 3dB bandwidth from 0.71 to 8.26 kHz. Measured input-referred noise and total power consumption are 20.7 μVrms and 1.90 μW respectively. The measured result shows that the optimizing the number of stages can achieve lower power consumption and demonstrates the neural amplifier's suitability for instu neutral activity recording. The advantage of power consumption of Pipelined ADC over Successive Approximation Register (SAR) ADC and Delta-Sigma ADC is discussed. An 8 bit fully differential (FD) Pipeline ADC for use in a smart RFID is presented in this dissertation. The Multiplying Digital to Analog Converter (MDAC) utilizes a novel offset cancellation technique robust to device leakage to reduce the input drift voltage. Simulation results of static and dynamic performance show this low power Pipeline ADC is suitable for multi-channel neural recording applications. The performance of all proposed building blocks is verified through test chips fabricated in IBM 180nm CMOS process. Both bench-top and real animal test results demonstrate the system's capability of recording neural signals for neural spike detection

    Pipelined analog-to-digital conversion using current-mode reference shifting

    Get PDF
    Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresPipeline Analog-to-digital converters (ADCs) are the most popular architecture for high-speed medium-to-high resolution applications. A fundamental, but often unreferenced building block of pipeline ADCs are the reference voltage circuits. They are required to maintain a stable reference with low output impedance to drive large internal switched capacitor loads quickly. Achieving this usually leads to a scheme that consumes a large portion of the overall power and area. A review of the literature shows that the required stable reference can be achieved with either on-chip buffering or with large off-chip decoupling capacitors. On-chip buffering is ideal for system integration but requires a high speed buffer with high power dissipation. The use of a reference with off-chip decoupling results in significant power savings but increases the pads of chip, the count of external components and the overall system cost. Moreover the amount of ringing on the internal reference voltage caused by the series inductance of the package makes this solution not viable for high speed ADCs. To address this challenge, a pipeline ADC employing a multiplying digital-to-analog converter (MDAC) with current-mode reference shifting is presented. Consequently, no reference voltages and, therefore, no voltage buffers are necessary. The bias currents are generated on-chip by a reference current generator that dissipates low power. The proposed ADC is designed in a 65 nm CMOS technology and operates at sampling rates ranging from 10 to 80 MS/s. At 40 MS/s the ADC dissipates 10.8 mW from a 1.2 V power supply and achieves an SNDR of 57.2 dB and a THD of -68 dB, corresponding to an ENOB of 9.2 bit. The corresponding figure of merit is 460 fJ/step

    Background Calibration With Piecewise Linearized Error Model for CMOS Pipeline A/D Converter

    Get PDF
    A new all-digital background calibration method, using a piecewise linear model to estimate the stage error pattern, is presented. The method corrects both linear and nonlinear errors. The proposed procedure converges in a few milliseconds and requires low hardware overhead, without the need of a high-capacity ROM or RAM. The calibration procedure is tested on a 0.6- µm CMOS pipeline analog-to-digital converter (ADC), which suffers from a high degree of nonlinear errors. The calibration gives improvements of 17 and 26 dB for signal-noise-and-distortion ratio (SNDR) and spurious-free dynamic range (SFDR), respectively, for the Nyquist input signal at the sampling rate of 33 MSample/s. The calibrated ADC achieves SNDR of 70.3 dB and SFDR of 81.3 dB at 33 MSample/s, which results in a resolution of about 12 b

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process
    • …
    corecore