893 research outputs found

    Collaborative music interaction on tabletops: an HCI approach

    Get PDF
    With the advent of tabletop interaction, collaborative activities are better supported than they are on single-user PCs because there exists a physical shareable space, and interaction with digital data is more embodied and social. In sound and music computing, collaborative music making has traditionally been done using interconnected networks, but using separated computers. Musical tabletops introduce opportunities of playing in collaboration through sharing physically the same musical interface. However, few tabletop musical interfaces exploit this collaborative potential (e.g. the Reactable). We are interested in looking into how collaboration can be fully supported by means of musical tabletops for music performance in contrast with more traditional settings. We are also looking at whether collective musical engagement can be enhanced by providing more suitable interfaces to collaboration. In HCI and software development, we find an iterative process approach of design and evaluation—where evaluation allows us to identify key issues that can be addressed in the next design iteration of the system. Using a similar iterative approach, we plan to design and evaluate some tabletop musical interfaces. The aim is to understand what design choices can enhance and enrich collaboration and collective musical engagement on these systems. In this paper, we explain the evaluation methodologies we have undertaken in three preliminary pilot studies, and the lessons we have learned. Initial findings indicate that evaluating tabletop musical interfaces is a complex endeavour which requires an approach as close as possible to a real context, with an interdisciplinary approach provided by interaction analysis techniques

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    An epistemic dimension space for musical devices

    Get PDF
    The analysis of digital music systems has traditionally been characterized by an approach that can be defined as phenomenological. The focus has been on the body and its relationship to the machine, often neglecting the system’s conceptual design. This paper brings into focus the epistemic features of digital systems, which implies emphasizing the cognitive, conceptual and music theoretical side of our musical instruments. An epistemic dimension space for the analysis of musical devices is proposed

    Multi-touch interaction principles for collaborative real-time music activities: towards a pattern language

    Get PDF
    In this paper we give an analysis of the literature on a set of problems that can arise when undertaking the interaction design of multi-touch applications for collaborative real-time music activities, which are designed for multitouch technologies (e.g. smartphones, tablets, interactive tabletops, among others). Each problem is described, and a candidate design pattern (CDP) is suggested in the form of a short sentence and a diagram—an approach inspired by Christopher Alexander’s A Pattern Language. These solutions relate to the fundamental collaborative principles of democratic relationships, identities and collective interplay. We believe that this approach might disseminate forms of best design practice for collaborative music applications, in order to produce real-time musical systems which are collaborative and expressive

    An Integrating Framework for Mixed Systems

    No full text
    International audienceTechnological advances in hardware manufacturing led to an extended range of possibilities for designing physical-digital objects involved in a mixed system. Mixed systems can take various forms and include augmented reality, augmented virtuality, and tangible systems. In this very dynamic context, it is difficult to compare existing mixed systems and to systematically explore the design space. Addressing this design problem, this chapter presents a unified point of view on mixed systems by focusing on mixed objects involved in interaction, i.e. hybrid physical-digital objects straddling physical and digital worlds. Our integrating framework is made of two complementary facets of a mixed object: we define intrinsic characteristics of an object as well as extrinsic characteristics of an object by considering its role in the interaction. Such characteristics of an object are useful for comparing existing mixed systems at a fine-grain level. The taxonomic power of these characteristics is discussed in the context of existing mixed systems from the literature. Their generative power is illustrated by considering a system, Roam, which we designed and developed

    An Abstraction Framework for Tangible Interactive Surfaces

    Get PDF
    This cumulative dissertation discusses - by the example of four subsequent publications - the various layers of a tangible interaction framework, which has been developed in conjunction with an electronic musical instrument with a tabletop tangible user interface. Based on the experiences that have been collected during the design and implementation of that particular musical application, this research mainly concentrates on the definition of a general-purpose abstraction model for the encapsulation of physical interface components that are commonly employed in the context of an interactive surface environment. Along with a detailed description of the underlying abstraction model, this dissertation also describes an actual implementation in the form of a detailed protocol syntax, which constitutes the common element of a distributed architecture for the construction of surface-based tangible user interfaces. The initial implementation of the presented abstraction model within an actual application toolkit is comprised of the TUIO protocol and the related computer-vision based object and multi-touch tracking software reacTIVision, along with its principal application within the Reactable synthesizer. The dissertation concludes with an evaluation and extension of the initial TUIO model, by presenting TUIO2 - a next generation abstraction model designed for a more comprehensive range of tangible interaction platforms and related application scenarios

    Musical Parameter Manipulation Possibilities of a Homemade Reactable

    Get PDF
    Musical parameter control is an important part of live interactive electronic computer music. Due to the increasing availability and affordability of music technology, including powerful computer software, advances in this area are being made to enable easier and more effective parameter control. The purpose of this paper is to investigate and discuss the musical parameter manipulation possibilities of a homemade instrument with a tangible tabletop interface based on the technology of the reacTable. The design and construction of the instrument is documented, including the physical build as well as the software component of the system, which incorporates the computer software ReacTIVision, Max/MSP and Reason. The core of the paper discusses parameter manipulation abilities by way of a comparison between two controllers: the homemade instrument and the Korg nanoKONTROL. Mapping strategies – in an interactive music sense – are explored in detail, while the execution and capabilities of parameter control by use of the physical interface devices of the two controllers are assessed

    Issues and techniques for collaborative music making on multi-touch surfaces

    Get PDF
    A range of systems exist for collaborative music making on multi-touch surfaces. Some of them have been highly successful, but currently there is no systematic way of designing them, to maximise collaboration for a particular user group. We are particularly interested in systems that will engage novices and experts. We designed a simple application in an initial attempt to clearly analyse some of the issues. Our application allows groups of users to express themselves in collaborative music making using pre-composed materials. User studies were video recorded and analysed using two techniques derived from Grounded Theory and Content Analysis. A questionnaire was also conducted and evaluated. Findings suggest that the application affords engaging interaction. Enhancements for collaborative music making on multi-touch surfaces are discussed. Finally, future work on the prototype is proposed to maximise engagement

    Towards an interactive environment for the performance of Dubstep music

    Get PDF
    This Masters by Research project explores the integration of different concepts relating to the presence of the human body in Dubstep music performance. Three intended performance systems propose that the body is the logical site for the interactive control of live Dubstep music. The physicality and gestures of instrumentalists, choreographed dancers, and audience members will be examined in order to develop new and exciting ways to perform this genre in a live setting. The systems take on a three-tiered hierarchical approach on two levels in regards to the extraction of gestural information from human body movements, as well as in regards to the importance – and length – of musical phenomena and parameters that are under control. The characteristics of Dubstep music are defined and maintained within each interactive music system. A model for this each proposed system will be examined, including discussion of the technology and methodology employed in order to apply the two hierarchies and create the interactive environment
    corecore