67 research outputs found

    Optimal Convergence Rates for Generalized Alternating Projections

    Full text link
    Generalized alternating projections is an algorithm that alternates relaxed projections onto a finite number of sets to find a point in their intersection. We consider the special case of two linear subspaces, for which the algorithm reduces to a matrix teration. For convergent matrix iterations, the asymptotic rate is linear and decided by the magnitude of the subdominant eigenvalue. In this paper, we show how to select the three algorithm parameters to optimize this magnitude, and hence the asymptotic convergence rate. The obtained rate depends on the Friedrichs angle between the subspaces and is considerably better than known rates for other methods such as alternating projections and Douglas-Rachford splitting. We also present an adaptive scheme that, online, estimates the Friedrichs angle and updates the algorithm parameters based on this estimate. A numerical example is provided that supports our theoretical claims and shows very good performance for the adaptive method.Comment: 20 pages, extended version of article submitted to CD

    A new projection method for finding the closest point in the intersection of convex sets

    Get PDF
    In this paper we present a new iterative projection method for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method, termed AAMR for averaged alternating modified reflections, can be viewed as an adequate modification of the Douglas--Rachford method that yields a solution to the best approximation problem. Under a constraint qualification at the point of interest, we show strong convergence of the method. In fact, the so-called strong CHIP fully characterizes the convergence of the AAMR method for every point in the space. We report some promising numerical experiments where we compare the performance of AAMR against other projection methods for finding the closest point in the intersection of pairs of finite dimensional subspaces

    Activity Identification and Local Linear Convergence of Douglas--Rachford/ADMM under Partial Smoothness

    Full text link
    Convex optimization has become ubiquitous in most quantitative disciplines of science, including variational image processing. Proximal splitting algorithms are becoming popular to solve such structured convex optimization problems. Within this class of algorithms, Douglas--Rachford (DR) and alternating direction method of multipliers (ADMM) are designed to minimize the sum of two proper lower semi-continuous convex functions whose proximity operators are easy to compute. The goal of this work is to understand the local convergence behaviour of DR (resp. ADMM) when the involved functions (resp. their Legendre-Fenchel conjugates) are moreover partly smooth. More precisely, when both of the two functions (resp. their conjugates) are partly smooth relative to their respective manifolds, we show that DR (resp. ADMM) identifies these manifolds in finite time. Moreover, when these manifolds are affine or linear, we prove that DR/ADMM is locally linearly convergent. When JJ and GG are locally polyhedral, we show that the optimal convergence radius is given in terms of the cosine of the Friedrichs angle between the tangent spaces of the identified manifolds. This is illustrated by several concrete examples and supported by numerical experiments.Comment: 17 pages, 1 figure, published in the proceedings of the Fifth International Conference on Scale Space and Variational Methods in Computer Visio

    Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems

    Full text link
    We consider projection algorithms for solving (nonconvex) feasibility problems in Euclidean spaces. Of special interest are the Method of Alternating Projections (MAP) and the Douglas-Rachford or Averaged Alternating Reflection Algorithm (AAR). In the case of convex feasibility, firm nonexpansiveness of projection mappings is a global property that yields global convergence of MAP and for consistent problems AAR. Based on (\epsilon, \delta)-regularity of sets developed by Bauschke, Luke, Phan and Wang in 2012, a relaxed local version of firm nonexpansiveness with respect to the intersection is introduced for consistent feasibility problems. Together with a coercivity condition that relates to the regularity of the intersection, this yields local linear convergence of MAP for a wide class of nonconvex problems,Comment: 22 pages, no figures, 30 reference

    Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility

    Full text link
    The problem of finding a vector with the fewest nonzero elements that satisfies an underdetermined system of linear equations is an NP-complete problem that is typically solved numerically via convex heuristics or nicely-behaved nonconvex relaxations. In this work we consider elementary methods based on projections for solving a sparse feasibility problem without employing convex heuristics. In a recent paper Bauschke, Luke, Phan and Wang (2014) showed that, locally, the fundamental method of alternating projections must converge linearly to a solution to the sparse feasibility problem with an affine constraint. In this paper we apply different analytical tools that allow us to show global linear convergence of alternating projections under familiar constraint qualifications. These analytical tools can also be applied to other algorithms. This is demonstrated with the prominent Douglas-Rachford algorithm where we establish local linear convergence of this method applied to the sparse affine feasibility problem.Comment: 29 pages, 2 figures, 37 references. Much expanded version from last submission. Title changed to reflect new development
    • …
    corecore