158,213 research outputs found

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin

    Robust Detection of Moving Human Target in Foliage-Penetration Environment Based on Hough Transform

    Get PDF
    Attention has been focused on the robust moving human target detection in foliage-penetration environment, which presents a formidable task in a radar system because foliage is a rich scattering environment with complex multipath propagation and time-varying clutter. Generally, multiple-bounce returns and clutter are additionally superposed to direct-scatter echoes. They obscure true target echo and lead to poor visual quality time-range image, making target detection particular difficult. Consequently, an innovative approach is proposed to suppress clutter and mitigate multipath effects. In particular, a clutter suppression technique based on range alignment is firstly applied to suppress the time-varying clutter and the instable antenna coupling. Then entropy weighted coherent integration (EWCI) algorithm is adopted to mitigate the multipath effects. In consequence, the proposed method effectively reduces the clutter and ghosting artifacts considerably. Based on the high visual quality image, the target trajectory is detected robustly and the radial velocity is estimated accurately with the Hough transform (HT). Real data used in the experimental results are provided to verify the proposed method

    Earth orbital teleoperator system man-machine interface evaluation

    Get PDF
    The teleoperator system man-machine interface evaluation develops and implements a program to determine human performance requirements in teleoperator systems

    A high-efficiency spin-resolved phototemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Full text link
    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90{\deg} bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.Comment: 16 pages, 11 figure

    Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Get PDF
    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionaly, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS

    Experiment definition phase shuttle laboratory, LDRL-10.6 experiment. Shuttle sortie to ground receiver terminal

    Get PDF
    System development and technology are described for a carbon dioxide laser data transmitter capable of transmitting 400 Mbps over a shuttle to ground station link

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Optically gated beating-heart imaging

    Get PDF
    The constant motion of the beating heart presents an obstacle to clear optical imaging, especially 3D imaging, in small animals where direct optical imaging would otherwise be possible. Gating techniques exploit the periodic motion of the heart to computationally "freeze" this movement and overcome motion artefacts. Optically gated imaging represents a recent development of this, where image analysis is used to synchronize acquisition with the heartbeat in a completely non-invasive manner. This article will explain the concept of optical gating, discuss a range of different implementation strategies and their strengths and weaknesses. Finally we will illustrate the usefulness of the technique by discussing applications where optical gating has facilitated novel biological findings by allowing 3D in vivo imaging of cardiac myocytes in their natural environment of the beating heart

    Azimuth laying system Patent

    Get PDF
    Inertial gimbal alignment system for spacecraft guidanc
    corecore