8,876 research outputs found

    Intercept and Recall: Examining Avidity Carryover in On-Site Collected Travel Data

    Get PDF
    This study examines the proper estimation of trip demand and economic benefits for visitors to recreation sites when past-season trip information is elicited from travelers intercepted on-site. We show that the proper weighting of past season counts is different from the standard on-site correction appropriate for current-season counts. We find that for our sample of lake visitors relatively stronger preference or “avidity” for the interview site carries over across seasons. We further show that using the correct weighting of past trip counts is critical in deriving meaningful estimates of travel demand and economic benefits.On-site Sampling; Recreation Demand Systems; Poisson-Lognormal Distribution; Simulated Maximum Likelihood

    Doubly Robust Inference when Combining Probability and Non-probability Samples with High-dimensional Data

    Get PDF
    Non-probability samples become increasingly popular in survey statistics but may suffer from selection biases that limit the generalizability of results to the target population. We consider integrating a non-probability sample with a probability sample which provides high-dimensional representative covariate information of the target population. We propose a two-step approach for variable selection and finite population inference. In the first step, we use penalized estimating equations with folded-concave penalties to select important variables for the sampling score of selection into the non-probability sample and the outcome model. We show that the penalized estimating equation approach enjoys the selection consistency property for general probability samples. The major technical hurdle is due to the possible dependence of the sample under the finite population framework. To overcome this challenge, we construct martingales which enable us to apply Bernstein concentration inequality for martingales. In the second step, we focus on a doubly robust estimator of the finite population mean and re-estimate the nuisance model parameters by minimizing the asymptotic squared bias of the doubly robust estimator. This estimating strategy mitigates the possible first-step selection error and renders the doubly robust estimator root-n consistent if either the sampling probability or the outcome model is correctly specified

    Jump-diffusion model of exchange rate dynamics : estimation via indirect inference

    Get PDF
    This paper investigates asymmetric effects of monetary policy over the business cycle. A two-state Markov Switching Model is employed to model both recessions and expansions. For the United States and Germany, strong evidence is found that monetary policy is more effective in a recession than during a boom. Also some evidence is found for asymmetry in the United Kingdom and Belgium. In the Netherlands, monetary policy is not very effective in either regime.

    Adaptive Threshold Sampling and Estimation

    Full text link
    Sampling is a fundamental problem in both computer science and statistics. A number of issues arise when designing a method based on sampling. These include statistical considerations such as constructing a good sampling design and ensuring there are good, tractable estimators for the quantities of interest as well as computational considerations such as designing fast algorithms for streaming data and ensuring the sample fits within memory constraints. Unfortunately, existing sampling methods are only able to address all of these issues in limited scenarios. We develop a framework that can be used to address these issues in a broad range of scenarios. In particular, it addresses the problem of drawing and using samples under some memory budget constraint. This problem can be challenging since the memory budget forces samples to be drawn non-independently and consequently, makes computation of resulting estimators difficult. At the core of the framework is the notion of a data adaptive thresholding scheme where the threshold effectively allows one to treat the non-independent sample as if it were drawn independently. We provide sufficient conditions for a thresholding scheme to allow this and provide ways to build and compose such schemes. Furthermore, we provide fast algorithms to efficiently sample under these thresholding schemes

    Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities

    Get PDF
    Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated

    Bayesian Inference under Cluster Sampling with Probability Proportional to Size

    Full text link
    Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design-based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to cluster size, and then units are randomly sampled inside selected clusters. Challenges arise when the sizes of nonsampled cluster are unknown. We propose nonparametric and parametric Bayesian approaches for predicting the unknown cluster sizes, with this inference performed simultaneously with the model for survey outcome. Simulation studies show that the integrated Bayesian approach outperforms classical methods with efficiency gains. We use Stan for computing and apply the proposal to the Fragile Families and Child Wellbeing study as an illustration of complex survey inference in health surveys

    Statistical properties and economic implications of Jump-Diffusion Processes with Shot-Noise effects

    Get PDF
    This paper analyzes the Shot-Noise Jump-Diffusion model of Altmann, Schmidt and Stute (2008), which introduces a new situation where the effects of the arrival of rare, shocking information to the financial markets may fade away in the long run. We analyze several economic implications of the model, providing an analytical expression for the process distribution. We also prove that certain specifications of this model can provide negative serial persistence. Additionally, we find that the degree of serial autocorrelation is related to the arrival and magnitude of abnormal information. Finally, a GMM framework is proposed to estimate the model parameters

    Statistical Properties and Economic Implications of Jump-Diffusion Processes with Shot-Noise Effects

    Get PDF
    This paper analyzes the Shot-Noise Jump-Diffusion model of Altmann, Schmidt and Stute (2008), which introduces a new situation where the effects of the arrival of rare, shocking information to the financial markets may fade away in the long run. We analyze several economic implications of the model, providing an analytical expression for the process distribution. We also prove that certain specifications of this model can provide negative serial persistence. Additionally, we find that the degree of serial autocorrelation is related to the arrival and magnitude of abnormal information. Finally, a GMM framework is proposed to estimate the model parameters.Filtered Poisson Process, Characteristic Function, Generalized Method of Moments
    • 

    corecore