1,365 research outputs found

    Maximally Resilient Replacement Paths for a Family of Product Graphs

    Get PDF
    Modern communication networks support fast path restoration mechanisms which allow to reroute traffic in case of (possibly multiple) link failures, in a completely decentralized manner and without requiring global route reconvergence. However, devising resilient path restoration algorithms is challenging as these algorithms need to be inherently local. Furthermore, the resulting failover paths often have to fulfill additional requirements related to the policy and function implemented by the network, such as the traversal of certain waypoints (e.g., a firewall). This paper presents local algorithms which ensure a maximally resilient path restoration for a large family of product graphs, including the widely used tori and generalized hypercube topologies. Our algorithms provably ensure that even under multiple link failures, traffic is rerouted to the other endpoint of every failed link whenever possible (i.e. detouring failed links), enforcing waypoints and hence accounting for the network policy. The algorithms are particularly well-suited for emerging segment routing networks based on label stacks

    Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion

    Get PDF
    To ensure high availability, datacenter networks must rely on local fast rerouting mechanisms that allow routers to quickly react to link failures, in a fully decentralized manner. However, configuring these mechanisms to provide a high resilience against multiple failures while avoiding congestion along failover routes is algorithmically challenging, as the rerouting rules can only depend on local failure information and must be defined ahead of time. This paper presents a randomized local fast rerouting algorithm for Clos networks, the predominant datacenter topologies. Given a graph G=(V,E)G=(V,E) describing a Clos topology, our algorithm defines local routing rules for each node vVv\in V, which only depend on the packet's destination and are conditioned on the incident link failures. We prove that as long as number of failures at each node does not exceed a certain bound, our algorithm achieves an asymptotically minimal congestion up to polyloglog factors along failover paths. Our lower bounds are developed under some natural routing assumptions

    Fast ReRoute on Programmable Switches

    Get PDF
    Highly dependable communication networks usually rely on some kind of Fast Re-Route (FRR) mechanism which allows to quickly re-route traffic upon failures, entirely in the data plane. This paper studies the design of FRR mechanisms for emerging reconfigurable switches. Our main contribution is an FRR primitive for programmable data planes, PURR, which provides low failover latency and high switch throughput, by avoiding packet recirculation. PURR tolerates multiple concurrent failures and comes with minimal memory requirements, ensuring compact forwarding tables, by unveiling an intriguing connection to classic ``string theory'' (i.e., stringology), and in particular, the shortest common supersequence problem. PURR is well-suited for high-speed match-action forwarding architectures (e.g., PISA) and supports the implementation of a broad variety of FRR mechanisms. Our simulations and prototype implementation (on an FPGA and a Tofino switch) show that PURR improves TCAM memory occupancy by a factor of 1.5x-10.8x compared to a naïve encoding when implementing state-of-the-art FRR mechanisms. PURR also improves the latency and throughput of datacenter traffic up to a factor of 2.8x-5.5x and 1.2x-2x, respectively, compared to approaches based on recirculating packets

    RODMRP - resilient on demand multicast routing protocol

    Get PDF
    ODMRP (On-Demand Multicast Routing Protocol) [6] [8] [2] is a popular multicast protocol for wireless ad hoc networks. The strengths of ODMRP are simplicity, high packet delivery ratio, and non-dependency on a specific unicast protocol. ODMRP floods a route request over the entire network to select a set of forwarding nodes for packet delivery. However, a single forwarding path is vulnerable to node failures, which are common due to the dynamic nature of mobile ad hoc networks. Furthermore, a set of misbehaving or malicious nodes can create network partitions and mount Denial-of-Service (DoS) attacks. This thesis proposes a ODMRP-based wireless multicast protocol named RODMRP that offers more reliable forwarding paths in face of node and network failures. A subset of the nodes that are not on forwarding paths rebroadcast received packets to nodes in their neighborhoods to overcome perceived node failures. This rebroadcasting creates redundant forwarding paths to circumvent failed areas in the network. Each node makes this forwarding decision probabilistically. Our simulation results indicate that RODMRP improves packet delivery ratio with minimal overheads, while retaining the original strengths of ODMRP

    Resilient communications in smart grids

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2018As redes elétricas, algumas já centenárias, foram concebidas para uma realidade bastante diferente da actual. O facto de terem sido desenhadas para transportar e distribuir a energia de forma unidirecional, torna a infraestrutura rígida, causando problemas em termos de escalabilidade e dificulta a sua evolução. Conhecidas questões ambientais têm levado a que a geração de energia baseada em combustíveis fosseis seja substituída pela geração através de fontes de energia renováveis. Esta situação motivou a criação de incentivos ao investimento nas fontes de energia renováveis, o que levou a que cada vez mais consumidores apostem na microgeração. Estas alterações causaram uma mudança na forma como é feita a produção e distribuição de energia elétrica, com uma aposta crescente na interligação entre as várias fontes ao longo da infraestrutura, tornando a gestão destas redes uma tarefa extremamente complexa. Com o crescimento significativo de consumidores que também podem ser produtores, torna-se essencial uma coordenação cuidada na injeção de energia na rede. Este facto, aliado à crescente utilização de energia elétrica, faz com que a manutenção da estabilidade da rede seja um enorme desafio. As redes inteligentes, ou smart grids, propõem resolver muitos dos problemas que surgiram com esta alteração do paradigma de consumo/produção de energia elétrica. Os componentes da rede passam a comunicar uns com os outros, tornando a rede eléctrica bidirecional, facilitando assim a sua manutenção e gestão. A possibilidade de constante troca de informação entre todos os componentes que constituem a smart grid permite uma reação imediata relativamente às ações dos produtores e consumidores de energia elétrica. No entanto, com esta alteração de paradigma surgiram também muitos desafios. Nomeadamente, a necessidade de comunicação entre os equipamentos existentes nas smart grids leva a que as redes de comunicação tenham de cobrir grandes áreas. Essa complexidade aumenta quando a gestão necessita de ser feita ao nível de cada equipamento e não de forma global. Isto ´e devido ao facto de nas redes de comunicação tradicionais, o plano de controlo e o de dados estarem no mesmo equipamento, o que leva a que o seu controlo seja difícil e propício a erros. Este controlo descentralizado dificulta também a reorganização da rede quando ocorrem faltas pelo facto de não existir um dispositivo que tenha o conhecimento completo da rede. A adaptação rápida a faltas de forma a tornar a comunicação resiliente tem grande importância em redes sensíveis a latência como é o caso da smart grid, pelo que mecanismos eficientes de tolerância a faltas devem ser implementados. As redes definidas por software, ou Software Defined Networks (SDN), surgem como uma potencial solução para estes problemas. Através da separação entre o plano de controlo e o plano de dados, permite a centralização lógica do controlo da rede no controlador. Para tal, é necessário adicionar uma camada de comunicação entre o controlador e os dispositivos de rede, através de um protocolo como o Openflow. Esta separação reduz a complexidade da gestão da rede e a centralização lógica torna possível programar a rede de forma global, de modo a aplicar as políticas pretendidas. Estes fatores tornam a SDN uma soluçãoo interessante para utilizar em smart grids. Esta tese investiga formas de tornar a rede de comunicações empregue numa smart grid resiliente a faltas. Pelas vantagens mencionadas anteriormente, é usada uma solução baseada em SDN, sendo propostos dois módulos essenciais. O primeiro tem como objectivo a monitorização segura da rede, permitindo obter em tempo real métricas como largura de banda, latência e taxa de erro. O segundo módulo trata do roteamento e engenharia de tráfego, utilizando a informação fornecida pelo módulo de monitorização de forma a que os componentes da smart grid comuniquem entre si, garantindo que os requisitos das aplicações são cumpridos. Dada a criticidade da rede elétrica e a importância das comunicações na smart grid, os mecanismos desenvolvidos toleram faltas, quer de tipo malicioso, quer de tipo acidental.The evolution on how electricity is produced and consumed has made the management of power grids an extremely complex task. Today’s centenary power grids were not designed to fit a new reality where consumers can also be producers, or the impressive increase in consumption caused by more sophisticated and powerful appliances. Smart Grids have been prepared as a solution to cope with this problem, by supporting more sophisticated communications among all the components, allowing the grid to react quickly to changes in both consumption or production of energy. On the other hand, resorting to information and communication technologies (ICT) brings some challenges, namely, managing network devices at this scale and assuring that the strict communication requirements are fulfilled is a dauting task. Software Defined Networks (SDN) can address some of these problems by separating the control and data planes, and logically centralizing network control in a controller. The centralised control has the ability to observe the current state of the network from a vantage point, and programatically react based on that view, making the management task substantially easier. In this thesis we provide a solution for a resilient communications network for Smart Grids based on SDN. As Smart Grids are very sensitive to network issues, such as latency and packet loss, it is important to detect and react to any fault in a timely manner. To achieve this we propose and develop two core modules, a network monitor and a routing and traffic engineering module. The first is a solution for monitoring with the goal to obtain a global view of the current state of the network. The solution is secure, allowing malicious attempts to subvert this module to be detected in a timely manner. This information is then used by the second module to make routing decisions. The routing and traffic engineering module ensures that the communications among the smart grid components are possible and fulfils the strict requirements of the Smart Grid
    corecore