9,214 research outputs found

    On tree-decompositions of one-ended graphs

    Get PDF
    A graph is one-ended if it contains a ray (a one way infinite path) and whenever we remove a finite number of vertices from the graph then what remains has only one component which contains rays. A vertex vv {\em dominates} a ray in the end if there are infinitely many paths connecting vv to the ray such that any two of these paths have only the vertex vv in common. We prove that if a one-ended graph contains no ray which is dominated by a vertex and no infinite family of pairwise disjoint rays, then it has a tree-decomposition such that the decomposition tree is one-ended and the tree-decomposition is invariant under the group of automorphisms. This can be applied to prove a conjecture of Halin from 2000 that the automorphism group of such a graph cannot be countably infinite and solves a recent problem of Boutin and Imrich. Furthermore, it implies that every transitive one-ended graph contains an infinite family of pairwise disjoint rays

    Triangulated surfaces in triangulated categories

    Full text link
    For a triangulated category A with a 2-periodic dg-enhancement and a triangulated oriented marked surface S we introduce a dg-category F(S,A) parametrizing systems of exact triangles in A labelled by triangles of S. Our main result is that F(S,A) is independent on the choice of a triangulation of S up to essentially unique Morita equivalence. In particular, it admits a canonical action of the mapping class group. The proof is based on general properties of cyclic 2-Segal spaces. In the simplest case, where A is the category of 2-periodic complexes of vector spaces, F(S,A) turns out to be a purely topological model for the Fukaya category of the surface S. Therefore, our construction can be seen as implementing a 2-dimensional instance of Kontsevich's program on localizing the Fukaya category along a singular Lagrangian spine.Comment: 55 pages, v2: references added and typos corrected, v3: expanded version, comments welcom

    Triangulated surfaces in triangulated categories

    No full text

    Self-avoiding walks and amenability

    Full text link
    The connective constant μ(G)\mu(G) of an infinite transitive graph GG is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height functions', namely: (i) whether μ(G)\mu(G) is a local function on certain graphs derived from GG, (ii) the equality of μ(G)\mu(G) and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating μ(G)\mu(G) to a given degree of accuracy. In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable groups support graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function. In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.Comment: v2 differs from v1 in the inclusion of further material concerning non-amenable graphs, notably an improved lower bound for the connective constan
    corecore