28,334 research outputs found

    The quantum dynamic capacity formula of a quantum channel

    Get PDF
    The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an "ab initio" approach, using only the most basic tools in the quantum information theorist's toolkit: the Alicki-Fannes' inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the "quantum dynamic capacity formula" characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula simplifies the computation of the trade-off surface, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.Comment: 24 pages, 3 figures; v2 has improved structure and minor corrections; v3 has correction regarding the optimizatio

    Trade-off coding for universal qudit cloners motivated by the Unruh effect

    Get PDF
    A "triple trade-off" capacity region of a noisy quantum channel provides a more complete description of its capabilities than does a single capacity formula. However, few full descriptions of a channel's ability have been given due to the difficult nature of the calculation of such regions---it may demand an optimization of information-theoretic quantities over an infinite number of channel uses. This work analyzes the d-dimensional Unruh channel, a noisy quantum channel which emerges in relativistic quantum information theory. We show that this channel belongs to the class of quantum channels whose capacity region requires an optimization over a single channel use, and as such is tractable. We determine two triple-trade off regions, the quantum dynamic capacity region and the private dynamic capacity region, of the d-dimensional Unruh channel. Our results show that the set of achievable rate triples using this coding strategy is larger than the set achieved using a time-sharing strategy. Furthermore, we prove that the Unruh channel has a distinct structure made up of universal qudit cloning channels, thus providing a clear relationship between this relativistic channel and the process of stimulated emission present in quantum optical amplifiers.Comment: 26 pages, 4 figures; v2 has minor corrections to Definition 2. Definition 4 and Remark 5 have been adde

    The pitfalls of deciding whether a quantum channel is (conjugate) degradable and how to avoid them

    Get PDF
    To decide whether a quantum channel is degradable is relatively easy: one has to find at least one example of a degrading quantum channel. But in general, no conclusive criterion exists to show the opposite. Using elementary methods we derive a necessary and sufficient condition to decide under what circumstances the conclusion is unambiguous. The findings lead to an extension of the antidegradability region for qubit and qutrit transpose depolarizing channels. In the qubit case we reproduce the known results for the class of qubit depolarizing channels (due to their equivalence). One of the consequences is that the optimal qubit and qutrit asymmetric cloners possess a single-letter quantum capacity formula. We also investigate the ramifications of the criterion for the search of exclusively conjugate degradable channels.Comment: v2: Full rank assumption added to the main theorem; to appear in Open Systems & Information Dynamic

    Entanglement-assisted private communication over quantum broadcast channels

    Get PDF
    We consider entanglement-assisted (EA) private communication over a quantum broadcast channel, in which there is a single sender and multiple receivers. We divide the receivers into two sets: the decoding set and the malicious set. The decoding set and the malicious set can either be disjoint or can have a finite intersection. For simplicity, we say that a single party Bob has access to the decoding set and another party Eve has access to the malicious set, and both Eve and Bob have access to the pre-shared entanglement with Alice. The goal of the task is for Alice to communicate classical information reliably to Bob and securely against Eve, and Bob can take advantage of pre-shared entanglement with Alice. In this framework, we establish a lower bound on the one-shot EA private capacity. When there exists a quantum channel mapping the state of the decoding set to the state of the malicious set, such a broadcast channel is said to be degraded. We establish an upper bound on the one-shot EA private capacity in terms of smoothed min- and max-entropies for such channels. In the limit of a large number of independent channel uses, we prove that the EA private capacity of a degraded quantum broadcast channel is given by a single-letter formula. Finally, we consider two specific examples of degraded broadcast channels and find their capacities. In the first example, we consider the scenario in which one part of Bob's laboratory is compromised by Eve. We show that the capacity for this protocol is given by the conditional quantum mutual information of a quantum broadcast channel, and so we thus provide an operational interpretation to the dynamic counterpart of the conditional quantum mutual information. In the second example, Eve and Bob have access to mutually exclusive sets of outputs of a broadcast channel.Comment: v2: 23 pages, 2 figures, accepted for publication in the special issue "Shannon's Information Theory 70 years on: applications in classical and quantum physics" for Journal of Physics

    Superadditivity in trade-off capacities of quantum channels

    Full text link
    In this article, we investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading classical communication, quantum communication and entanglement. Understanding such additivity property is important if we want to optimally use a quantum channel for general communication purpose. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple capacity region.Comment: 15 pages. v2: typo correcte
    • …
    corecore