274,129 research outputs found

    Empirical modelling principles to support learning in a cultural context

    Get PDF
    Much research on pedagogy stresses the need for a broad perspective on learning. Such a perspective might take account (for instance) of the experience that informs knowledge and understanding [Tur91], the situation in which the learning activity takes place [Lav88], and the influence of multiple intelligences [Gar83]. Educational technology appears to hold great promise in this connection. Computer-related technologies such as new media, the internet, virtual reality and brain-mediated communication afford access to a range of learning resources that grows ever wider in its scope and supports ever more sophisticated interactions. Whether educational technology is fulfilling its potential in broadening the horizons for learning activity is more controversial. Though some see the successful development of radically new educational resources as merely a matter of time, investment and engineering, there are also many critics of the trends in computer-based learning who see little evidence of the greater degree of human engagement to which new technologies aspire [Tal95]. This paper reviews the potential application to educational technology of principles and tools for computer-based modelling that have been developed under the auspices of the Empirical Modelling (EM) project at Warwick [EMweb]. This theme was first addressed at length in a previous paper [Bey97], and is here revisited in the light of new practical developments in EM both in respect of tools and of model-building that has been targetted at education at various levels. Our central thesis is that the problems of educational technology stem from the limitations of current conceptual frameworks and tool support for the essential cognitive model building activity, and that tackling these problems requires a radical shift in philosophical perspective on the nature and role of empirical knowledge that has significant practical implications. The paper is in two main sections. The first discusses the limitations of the classical computer science perspective where educational technology to support situated learning is concerned, and relates the learning activities that are most closely associated with a cultural context to the empiricist perspective on learning introduced in [Bey97]. The second outlines the principles of EM and describes and illustrates features of its practical application that are particularly well-suited to learning in a cultural setting

    Biodigital publics: personal genomes as digital media artifacts

    Get PDF
    The recent proliferation of personal genomics and direct-to-consumer (DTC) genomics has attracted much attention and publicity. Concern around these developments has mainly focused on issues of biomedical regulation and hinged on questions of how people understand genomic information as biomedical and what meaning they make of it. However, this publicity amplifies genome sequences which are also made as internet texts and, as such, they generate new reading publics. The practices around the generation, circulation and reading of genome scans do not just raise questions about biomedical regulation, they also provide the focus for an exploration of how contemporary public participation in genomics works. These issues around the public features of DTC genomic testing can be pursued through a close examination of the modes of one of the best known providers—23andMe. In fact, genome sequences circulate as digital artefacts and, hence, people are addressed by them. They are read as texts, annotated and written about in browsers, blogs and wikis. This activity also yields content for media coverage which addresses an indefinite public in line with Michael Warner’s conceptualisation of publics. Digital genomic texts promise empowerment, personalisation and community, but this promise may obscure the compliance and proscription associated with these forms. The kinds of interaction here can be compared to those analysed by Andrew Barry. Direct-to-consumer genetics companies are part of a network providing an infrastructure for genomic reading publics and this network can be mapped and examined to demonstrate the ways in which this formation both exacerbates inequalities and offers possibilities for participation in biodigital culture

    The Road Ahead for State Assessments

    Get PDF
    The adoption of the Common Core State Standards offers an opportunity to make significant improvements to the large-scale statewide student assessments that exist today, and the two US DOE-funded assessment consortia -- the Partnership for the Assessment of Readiness for College and Careers (PARCC) and the SMARTER Balanced Assessment Consortium (SBAC) -- are making big strides forward. But to take full advantage of this opportunity the states must focus squarely on making assessments both fair and accurate.A new report commissioned by the Rennie Center for Education Research & Policy and Policy Analysis for California Education (PACE), The Road Ahead for State Assessments, offers a blueprint for strengthening assessment policy, pointing out how new technologies are opening up new possibilities for fairer, more accurate evaluations of what students know and are able to do. Not all of the promises can yet be delivered, but the report provides a clear set of assessment-policy recommendations. The Road Ahead for State Assessments includes three papers on assessment policy.The first, by Mark Reckase of Michigan State University, provides an overview of computer adaptive assessment. Computer adaptive assessment is an established technology that offers detailed information on where students are on a learning continuum rather than a summary judgment about whether or not they have reached an arbitrary standard of "proficiency" or "readiness." Computer adaptivity will support the fair and accurate assessment of English learners (ELs) and lead to a serious engagement with the multiple dimensions of "readiness" for college and careers.The second and third papers give specific attention to two areas in which we know that current assessments are inadequate: assessments in science and assessments for English learners.In science, paper-and-pencil, multiple choice tests provide only weak and superficial information about students' knowledge and skills -- most specifically about their abilities to think scientifically and actually do science. In their paper, Chris Dede and Jody Clarke-Midura of Harvard University illustrate the potential for richer, more authentic assessments of students' scientific understanding with a case study of a virtual performance assessment now under development at Harvard. With regard to English learners, administering tests in English to students who are learning the language, or to speakers of non-standard dialects, inevitably confounds students' content knowledge with their fluency in Standard English, to the detriment of many students. In his paper, Robert Linquanti of WestEd reviews key problems in the assessment of ELs, and identifies the essential features of an assessment system equipped to provide fair and accurate measures of their academic performance.The report's contributors offer deeply informed recommendations for assessment policy, but three are especially urgent.Build a system that ensures continued development and increased reliance on computer adaptive testing. Computer adaptive assessment provides the essential foundation for a system that can produce fair and accurate measurement of English learners' knowledge and of all students' knowledge and skills in science and other subjects. Developing computer adaptive assessments is a necessary intermediate step toward a system that makes assessment more authentic by tightly linking its tasks and instructional activities and ultimately embedding assessment in instruction. It is vital for both consortia to keep these goals in mind, even in light of current technological and resource constraints.Integrate the development of new assessments with assessments of English language proficiency (ELP). The next generation of ELP assessments should take into consideration an English learners' specific level of proficiency in English. They will need to be based on ELP standards that sufficiently specify the target academic language competencies that English learners need to progress in and gain mastery of the Common Core Standards. One of the report's authors, Robert Linquanti, states: "Acknowledging and overcoming the challenges involved in fairly and accurately assessing ELs is integral and not peripheral to the task of developing an assessment system that serves all students well. Treating the assessment of ELs as a separate problem -- or, worse yet, as one that can be left for later -- calls into question the basic legitimacy of assessment systems that drive high-stakes decisions about students, teachers, and schools." Include virtual performance assessments as part of comprehensive state assessment systems. Virtual performance assessments have considerable promise for measuring students' inquiry and problem-solving skills in science and in other subject areas, because authentic assessment can be closely tied to or even embedded in instruction. The simulation of authentic practices in settings similar to the real world opens the way to assessment of students' deeper learning and their mastery of 21st century skills across the curriculum. We are just setting out on the road toward assessments that ensure fair and accurate measurement of performance for all students, and support for sustained improvements in teaching and learning. Developing assessments that realize these goals will take time, resources and long-term policy commitment. PARCC and SBAC are taking the essential first steps down a long road, and new technologies have begun to illuminate what's possible. This report seeks to keep policymakers' attention focused on the road ahead, to ensure that the choices they make now move us further toward the goal of college and career success for all students. This publication was released at an event on May 16, 2011

    Digital Scholarship: Applying Digital Tools to Undergraduate Student Research Papers, A Proposal for a Freshman Seminar. Part I: Definition of Student Research Methodology

    Full text link
    There are many digital tools that can be used for research and presentation in nearly every college discipline, including the social sciences and humanities. These tools hold the promise to radically change both the process and products of research. But in their application these tools have failed miserably to live up to their promise. This paper is based on the hypothesis that one reason these tools do reach their potential is that there is no systemic way to include them in research process, resulting in the tools being seen as ways to improve the final research product. This results in the tools becoming just an added on kludge, and leading researchers to the conclude that they are hard to use, full of bugs and other problems, and that they do not bring a lot of value to the research. This paper is an attempt to address this problem of including digital tools in a research process. It is part of a series of papers proposing a systematic methodology for including digital tools in a research process. This paper is the first, and outlines a methodology for the research process that allows the application of digital tools to a small area, undergraduate student research papers. It will outline a development process that will systematize the steps in the research process. These steps will then be used to classify the digital tools, and show how they can be applied to the research process. The final product of this paper will be a process methodology for creating student research papers to be used in a class to be run as a freshman seminar. The students will be taught this research methodology, and be led through the development of a research paper using the steps defined in this methodology. The steps in the process being enhanced using appropriate digital tools applicable to each step in the methodology. The ability of the students to do research using the research methodology and digital tools will be measured by the degree of success the students have in completing a humanities/social science research product as part of the class. The students will be followed in a longitudinal study by asking them to complete a short survey at the end of each year of their undergraduate education

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    The computer revolution in science: steps towards the realization of computer-supported discovery environments

    Get PDF
    The tools that scientists use in their search processes together form so-called discovery environments. The promise of artificial intelligence and other branches of computer science is to radically transform conventional discovery environments by equipping scientists with a range of powerful computer tools including large-scale, shared knowledge bases and discovery programs. We will describe the future computer-supported discovery environments that may result, and illustrate by means of a realistic scenario how scientists come to new discoveries in these environments. In order to make the step from the current generation of discovery tools to computer-supported discovery environments like the one presented in the scenario, developers should realize that such environments are large-scale sociotechnical systems. They should not just focus on isolated computer programs, but also pay attention to the question how these programs will be used and maintained by scientists in research practices. In order to help developers of discovery programs in achieving the integration of their tools in discovery environments, we will formulate a set of guidelines that developers could follow

    Information Outlook, October 2003

    Get PDF
    Volume 7, Issue 10https://scholarworks.sjsu.edu/sla_io_2003/1009/thumbnail.jp

    A Case Study of Applied Co-Design in 3D Virtual Space for Facilitating Bicycle Use on Light Rail Systems

    Get PDF
    Cycling is highly recommended by experts concerned with environmental and public health. Cycling does not produce CO2 emissions, can be economical, and can improve physical fitness. However, the barriers to cycling remain significant to many. Combined with a light rail system the bicycle offers a compelling alternative to automobiles; yet, bicycles are denied access on certain rail systems because they can take too much space away from pedestrians who share the light rail interior. To help solve this problem, Co-Design in 3D virtual space is proposed as an effective means of creating an innovative design solution. The digital questionnaires and virtual 3D modeling research/design method used in this study gives the participant the ability to offer insights and express ideas through digital means and in 3D virtual space. This method, Co-Design in Virtual Space (CoDeViS), was developed by the author. CoDeViS methods are an outgrowth of physical co-design methods such as 2D collages and 3D Velcro modeling, developed by those featured in The International Journal of CoCreation in Design and the Arts. Physical 3D methods have been widely accepted in the new product development industry as effective ways to involve people outside a design team in the research and design process. CoDeViS methods offer promise to those seeking to make the principles of co-design available to larger groups of people in discrete locations around the world at lower cost. Historical developments, current technology, and the abilities of everyday people make CoDeViS possible.</p

    NSF SSTEM MIRRORS Data 2018-2021

    Get PDF
    With five years of funding from the National Science Foundation\u27s Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) program, John Carroll University (JCU) will provide scholarships to 32 students with demonstrated financial need and academic promise. The scholarships will be awarded to first-year and transfer students who are pursuing bachelor\u27s degrees in STEM in Biology, Chemistry, Mathematics, Computer Science and Physics. The Scholars in the program will receive academic support that includes a STEM-specific orientation, a summer bridge program, cohort advising, and curricula introducing scientific thinking and research.The project goals are to improve one-year retention and four-year graduation rates, and to train and graduate scholars who will meet local, regional, and national demands for a STEM-educated workforce. This project will provide evidence-based academic and student support services designed to support the transition and success of JCU transfer student cohorts. These services include a STEM living-learning community (LLC), peer-led team learning, career development, summer research fellowships, and travel to scientific meetings. This project will contribute to education research by investigating the role of reflection (i.e., conscientious evaluation of new knowledge or experiences) in the development of student-scientists, and the influence of STEM LLCs on student persistence and sense of well-being. The ongoing process of reflection is critical for academic success, social well-being, and vocational self-efficacy. However, the importance of reflection as a tool for success in STEM disciplines is unknown. This project will assess reflection as a tool to increase retention and performance in STEM experimentally, by monitoring performance indicators for S-STEM Scholars compared to the pool of S-STEM-eligible students who were not selected for a scholarship and therefore did not participate in the program\u27s reflection activities. Finally, this project will help provide S-STEM students the opportunity to be successful in high-demand STEM disciplines
    corecore