57 research outputs found

    Microarchitectures pour la sauvegarde incrémentale, robuste et efficace dans les systÚmes à alimentation intermittente

    Get PDF
    Embedded devices powered with environmental energy harvesting, have to sustain computation while experiencing unexpected power failures.To preserve the progress across the power interruptions, Non-Volatile Memories (NVMs) are used to quickly save the state. This dissertation first presents an overview and comparison of different NVM technologies, based on different surveys from the literature. The second contribution we propose is a dedicated backup controller, called Freezer, that implements an on-demand incremental backup scheme. This can make the size of the backup 87.7% smaller then a full-memory backup strategy from the state of the art (SoA). Our third contribution addresses the problem of corruption of the state, due to interruptions during the backup process. Two algorithms are presented, that improve on the Freezer incremental backup process, making it robust to errors, by always guaranteeing the existence of a correct state, that can be restored in case of backup errors. These two algorithms can consume 23% less energy than the usual double-buffering technique used in the SoA. The fourth contribution, addresses the scalability of our proposed approach. Combining Freezer with Bloom filters, we introduce a backup scheme that can cover much larger address spaces, while achieving a backup size which is half the size of the regular Freezer approach.Les appareils embarquĂ©s alimentĂ©s par la rĂ©cupĂ©ration d'Ă©nergie environnementale doivent maintenir le calcul tout en subissant des pannes de courant inattendues. Pour prĂ©server la progression Ă  travers les interruptions de courant, des mĂ©moires non volatiles (NVM) sont utilisĂ©es pour enregistrer rapidement l'Ă©tat. Cette thĂšse prĂ©sente d'abord une vue d'ensemble et une comparaison des diffĂ©rentes technologies NVM, basĂ©es sur diffĂ©rentes enquĂȘtes de la littĂ©rature. La deuxiĂšme contribution que nous proposons est un contrĂŽleur de sauvegarde dĂ©diĂ©, appelĂ© Freezer, qui implĂ©mente un schĂ©ma de sauvegarde incrĂ©mentale Ă  la demande. Cela peut rĂ©duire la taille de la sauvegarde de 87,7% Ă  celle d'une stratĂ©gie de sauvegarde Ă  mĂ©moire complĂšte de l'Ă©tat de l'art. Notre troisiĂšme contribution aborde le problĂšme de la corruption de l'Ă©tat, due aux interruptions pendant le processus de sauvegarde. Deux algorithmes sont prĂ©sentĂ©s, qui amĂ©liorent le processus de sauvegarde incrĂ©mentale de Freezer, le rendant robuste aux erreurs, en garantissant toujours l'existence d'un Ă©tat correct, qui peut ĂȘtre restaurĂ© en cas d'erreurs de sauvegarde. Ces deux algorithmes peuvent consommer 23%23\% d'Ă©nergie en moins que la technique de ``double-buffering'' utilisĂ©e dans l'Ă©tat de l'art. La quatriĂšme contribution porte sur l'Ă©volutivitĂ© de notre approche proposĂ©e. En combinant Freezer avec des filtres Bloom, nous introduisons un schĂ©ma de sauvegarde qui peut couvrir des espaces d'adressage beaucoup plus grands, tout en obtenant une taille de sauvegarde qui est la moitiĂ© de la taille de l'approche Freezer habituelle

    Nanodot-based organic memory devices

    Get PDF
    In this study, resistor-type, diode-type, and transistor-type organic memory devices were investigated, aiming at the low-cost plastic integrated circuit applications. A series of solution-processing techniques including spin-coating, inkjet printing, and self-assembly were employed to fabricate these devices. The organic resistive memory device is based on a novel molecular complex film composed of tetracyanoquinodimethane (TCNQ) and a soluble methanofullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM). It has an Al/molecules/Al sandwich structure. The molecular layer was formed by spin-coating technique instead of expensive vacuum deposition method. The current-voltage characteristics show that the device switches from the initial \u27low\u27 conduction state to \u27high\u27 conduction state upon application of external electric field at room temperature and return to \u27low\u27 conduction state when a high current pulse is applied. The on/off ratio is over 106. Each state has been found to remain stable for more than five months, even after the external electric field is removed. The PCBM nanodots wrapped by TCNQ molecules can form potential wells for charge trapping, and are believed to be responsible for the memory effects. A rewritable diode memory device was achieved in an improved configuration, i.e., ITO-PEDOT:PSS-PCBM/TCNQ-Al, where a semiconductor polymer PEDOT:PSS is used to form p+-N heterojunction with PCBM/TCNQ. It exhibits a diode characteristic (low conductive) before switching to a high-conductive Poole-Frenkel regime upon applying a positive external bias to ITO. The on/off ratio at +1.0 V is up to 105. Simulation results from Taurus-Medici are in qualitative agreement with the experimental results and the proposed charge storage model. The transistor-type memory device is fabricated on a heavily doped n-type silicon (n+-Si) substrate with a 100 nm thick thermally-grown oxide layer. The n+-Si serves as the gate electrode, while the oxide layer functions as the control gate dielectric. Gold nanoparticles as the charge storage units are deposited on the substrate by electrostatic self-assembly method. A self-assembled multilayer of polyelectrolytes, together with a thin spin-coated poly(4-vinyl phenol) layer, covers the gold nanoparticles and separates them from the poly(3-hexyl thiophene) channel. Conducting polymer PEDOT:PSS is inkjet printed to form the source/drain electrodes. The device exhibits significant hysteresis behavior in its Ids-Vgs characteristics. The charge storage in gold nanodots (diameter = 16 nm) was confirmed by comparing with devices having no gold nanoparticles, although the effects of interfacial traps may be also significant. The data retention time of the transistor memory is about 60 seconds, which needs to be further improved. It appears that this is the first demonstration of memory effects in an organic transistor caused by charge storage in metal nanodots in the gate dielectric. Therefore, the approach reported in this work offers a new direction to make low-cost organic transistor memories

    Energy-Efficient In-Memory Architectures Leveraging Intrinsic Behaviors of Embedded MRAM Devices

    Get PDF
    For decades, innovations to surmount the processor versus memory gap and move beyond conventional von Neumann architectures continue to be sought and explored. Recent machine learning models still expend orders of magnitude more time and energy to access data in memory in addition to merely performing the computation itself. This phenomenon referred to as a memory-wall bottleneck, is addressed herein via a completely fresh perspective on logic and memory technology design. The specific solutions developed in this dissertation focus on utilizing intrinsic switching behaviors of embedded MRAM devices to design cross-layer and energy-efficient Compute-in-Memory (CiM) architectures, accelerate the computationally-intensive operations in various Artificial Neural Networks (ANNs), achieve higher density and reduce the power consumption as crucial requirements in future Internet of Things (IoT) devices. The first cross-layer platform developed herein is an Approximate Generative Adversarial Network (ApGAN) designed to accelerate the Generative Adversarial Networks from both algorithm and hardware implementation perspectives. In addition to binarizing the weights, further reduction in storage and computation resources is achieved by leveraging an in-memory addition scheme. Moreover, a memristor-based CiM accelerator for ApGAN is developed. The second design is a biologically-inspired memory architecture. The Short-Term Memory and Long-Term Memory features in biology are realized in hardware via a beyond-CMOS-based learning approach derived from the repeated input information and retrieval of the encoded data. The third cross-layer architecture is a programmable energy-efficient hardware implementation for Recurrent Neural Network with ultra-low power, area-efficient spin-based activation functions. A novel CiM architecture is proposed to leverage data-level parallelism during the evaluation phase. Specifically, we employ an MRAM-based Adjustable Probabilistic Activation Function (APAF) via a low-power tunable activation mechanism, providing adjustable accuracy levels to mimic ideal sigmoid and tanh thresholding along with a matching algorithm to regulate neuronal properties. Finally, the APAF design is utilized in the Long Short-Term Memory (LSTM) network to evaluate the network performance using binary and non-binary activation functions. The simulation results indicate up to 74.5 x 215; energy-efficiency, 35-fold speedup and ~11x area reduction compared with the similar baseline designs. These can form basis for future post-CMOS based non-Von Neumann architectures suitable for intermittently powered energy harvesting devices capable of pushing intelligence towards the edge of computing network

    Spintronics-based Architectures for non-von Neumann Computing

    Get PDF
    The scaling of transistor technology in the last few decades has significantly impacted our lives. It has given birth to different kinds of computational workloads which are becoming increasingly relevant. Some of the most prominent examples are Machine Learning based tasks such as image classification and pattern recognition which use Deep Neural Networks that are highly computation and memory-intensive. The traditional and general-purpose architectures that we use today typically exhibit high energy and latency on such computations. This, and the apparent end of Moore's law of scaling, has got researchers into looking for devices beyond CMOS and for computational paradigms that are non-conventional. In this dissertation, we focus on a spintronic device, the Magnetic Tunnel Junction (MTJ), which has demonstrated potential as cache and embedded memory. We look into how the MTJ can be used beyond memory and deployed in various non-conventional and non-von Neumann architectures for accelerating computations or making them energy efficient. First, we investigate into Stochastic Computing (SC) and show how MTJs can be used to build energy-efficient Neural Network (NN) hardware in this domain. SC is primarily bit-serial computing which requires simple logic gates for arithmetic operations. We explore the use of MTJs as Stochastic Number Generators (SNG) by exploiting their probabilistic switching characteristics and propose an energy-efficient MTJ-SNG. It is deployed as part of an NN hardware implemented in the SC domain. Its characteristics allow for achieving further energy efficiency through NN weight approximation, towards which we develop an optimization problem. Next, we turn our attention to analog computing and propose a method for training of analog Neural Network hardware. We consider a resistive MTJ crossbar architecture for representing an NN layer since it is capable of in-memory computing and performs matrix-vector multiplications with O(1) time complexity. We propose the on-chip training of the NN crossbar since, first, it can leverage the parallelism in the crossbar to perform weight update, second, it allows to take into account the device variations, and third, it enables avoiding large sneak currents in transistor-less crossbars which can cause undesired weight changes. Lastly, we propose an MTJ-based non-von Neumann hardware platform for solving combinatorial optimization problems since they are NP-hard. We adopt the Ising model for encoding such problems and solving them with simulated annealing. We let MTJs represent Ising units, design a scalable circuit capable of performing Ising computations and develop a reconfigurable architecture to which any NP-hard problem can be mapped. We also suggest methods to take into account the non-idealities present in the proposed hardware

    Exploring emergence in interconnected ferromagnetic nanoring arrays

    Get PDF
    Emergent interactions in periodic, artificial ferromagnetic nanostructures is well explored for magnetic systems such as artificial spin ices (ASI). This work presents a novel approach of an interconnected array of ferromagnetic nanorings to harness emergence in a dynamic system for functionality. Magnetic nanorings have two preferred configurations of magnetisation – ‘vortex’ that contains no domain walls (DWs) and ‘onion’ state with two DWs. In-plane applied rotating fields move DWs around a ring. The junction between interconnected rings presents a pinning potential that must be overcome to continue DW motion. In an ensemble, such as an array of interconnected rings, a sufficiently high field gives unimpeded DW motion. Under a sufficiently low field, no DWs de-pin. Both conserve DW population. Between these limits, de-pinning is probabilistic and field dependent. When one DW in an ‘onion’ state is pinned and the other de-pins, annihilation of DWs will occur and rings convert from ‘onion’ to ‘vortex’. Micromagnetic modelling also shows a DW de-pinning from a junction adjacent to a ‘vortex’ ring repopulates it with DWs. Analytical modelling of DW population revealed an equilibrium that varies non- monotonically with de-pinning probability and varies with array size and geometry. Polarised neutron reflectometry (PNR) and MOKE magnetometry measured arrays of permalloy nanorings. Magnetisation as a function of applied rotating field strength confirmed a non-monotonic response. Magnetic force microscopy (MFM) and photoemission electron microscopy (PEEM) allowed direct observation of DW configurations, revealing: highly ordered arrangements of ‘onion’ states at saturation; minor changes in DW population with low and high strength rotating fields; DW loss and breakdown in long-range order with intermediate fields. Imaging showed junctions produce behaviour analogous to emergent vertex configurations in ASIs. Interconnected nanoring arrays show good candidacy for novel computing architectures, such as reservoir computing, given their dynamic tuneability, non-linear response to an external stimulus, scalability, fading memory and repeatability

    Rigorous software design for nano and micro satellites using BIP framework

    Get PDF
    The CubETH satellite mission, a cooperative Swiss CubeSat mission involving ETH Zurich, EPF Lausanne, several universities of applied sciences, and Swiss companies, will allow technology demonstrations and proof-of-concepts concerning GNSS-based navigation information by carrying five patch antennas, each connected to two independent u-blox NEO-7N receivers. These very small, commercially available low-cost receivers are able to track single-frequency code and phase data of all the major GNSS, i.e. GPS, GLONASS, QZSS, Galileo and Beidou. The main science objective for the CubETH mission is to investigate precise orbit determination strategies using COTS hardware. The mission shall also demonstrate new technologies, applicable in the field of small satellites. In this work, we focus mostly on development of robust flight software for small and nano satellites. During the Swisscube project there were numerous problems with validation and verification of the flight software code. The software has to be adapted to the hardware architecture selected for every new satellite mission. While commercial tools exist to help with the issue, subject of robust software development was not addressed by the cubesat community, mostly due to lack of resources. Some projects simply structure their code in C/C++ and then extensively test it, maybe using some analysis tools such as "Lint" [5]. This is an helpful tool to find some design errors, but it does not guarantee that the software behavior is the desired one. Others use SysML/UML tools to describe the system as a whole and then check some properties such as energy consumption. SysML can be a valid tool for system engineering as a whole, but it is not rigorous enough to allow automatic software behavior verification and validation. In this project the “Behavior Interaction Priority” BIP framework will be used to design the software running in the control and data management subsystem (CDMS) of CubETH. The BIP framework has been developed by the Verimag laboratory in Grenoble university and is currently used in the EPFL by the "Rigorous System Design Laboratory" (RISD). We have designed and modeled a full software architecture using this framework to formally verify our software. We will present lessons learned and problems that were encountered during the development

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design
    • 

    corecore