37,806 research outputs found

    The algorithmics of solitaire-like games

    Get PDF
    One-person solitaire-like games are explored with a view to using them in teaching algorithmic problem solving. The key to understanding solutions to such games is the identification of invariant properties of polynomial arithmetic. We demonstrate this via three case studies: solitaire itself, tiling problems and a novel class of one-person games. The known classification of states of the game of (peg) solitaire into 16 equivalence classes is used to introduce the relevance of polynomial arithmetic. Then we give a novel algebraic formulation of the solution to a class of tiling problems. Finally, we introduce an infinite class of challenging one-person games, which we call ``replacement-set games'', inspired by earlier work by Chen and Backhouse on the relation between cyclotomic polynomials and generalisations of the seven-trees-in-one type isomorphism. We present an algorithm to solve arbitrary instances of replacement-set games and we show various ways of constructing infinite (solvable) classes of replacement-set games

    Black Box White Arrow

    Full text link
    The present paper proposes a new and systematic approach to the so-called black box group methods in computational group theory. Instead of a single black box, we consider categories of black boxes and their morphisms. This makes new classes of black box problems accessible. For example, we can enrich black box groups by actions of outer automorphisms. As an example of application of this technique, we construct Frobenius maps on black box groups of untwisted Lie type in odd characteristic (Section 6) and inverse-transpose automorphisms on black box groups encrypting (P)SLn(Fq){\rm (P)SL}_n(\mathbb{F}_q). One of the advantages of our approach is that it allows us to work in black box groups over finite fields of big characteristic. Another advantage is explanatory power of our methods; as an example, we explain Kantor's and Kassabov's construction of an involution in black box groups encrypting SL2(2n){\rm SL}_2(2^n). Due to the nature of our work we also have to discuss a few methodological issues of the black box group theory. The paper is further development of our text "Fifty shades of black" [arXiv:1308.2487], and repeats parts of it, but under a weaker axioms for black box groups.Comment: arXiv admin note: substantial text overlap with arXiv:1308.248

    The Complexity of Testing Monomials in Multivariate Polynomials

    Full text link
    The work in this paper is to initiate a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by certain economically compact structure has a multilinear monomial in its sum-product expansion. The complexity aspects of this problem and its variants are investigated with two folds of objectives. One is to understand how this problem relates to critical problems in complexity, and if so to what extent. The other is to exploit possibilities of applying algebraic properties of polynomials to the study of those problems. A series of results about ΠΣΠ\Pi\Sigma\Pi and ΠΣ\Pi\Sigma polynomials are obtained in this paper, laying a basis for further study along this line

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Rational, Replacement, and Local Invariants of a Group Action

    Full text link
    The paper presents a new algorithmic construction of a finite generating set of rational invariants for the rational action of an algebraic group on the affine space. The construction provides an algebraic counterpart of the moving frame method in differential geometry. The generating set of rational invariants appears as the coefficients of a Groebner basis, reduction with respect to which allows to express a rational invariant in terms of the generators. The replacement invariants, introduced in the paper, are tuples of algebraic functions of the rational invariants. Any invariant, whether rational, algebraic or local, can be can be rewritten terms of replacement invariants by a simple substitution.Comment: 37 page
    • …
    corecore