69 research outputs found

    Simulation and Theory of Large-Scale Cortical Networks

    Get PDF
    Cerebral cortex is composed of intricate networks of neurons. These neuronal networks are strongly interconnected: every neuron receives, on average, input from thousands or more presynaptic neurons. In fact, to support such a number of connections, a majority of the volume in the cortical gray matter is filled by axons and dendrites. Besides the networks, neurons themselves are also highly complex. They possess an elaborate spatial structure and support various types of active processes and nonlinearities. In the face of such complexity, it seems necessary to abstract away some of the details and to investigate simplified models. In this thesis, such simplified models of neuronal networks are examined on varying levels of abstraction. Neurons are modeled as point neurons, both rate-based and spike-based, and networks are modeled as block-structured random networks. Crucially, on this level of abstraction, the models are still amenable to analytical treatment using the framework of dynamical mean-field theory. The main focus of this thesis is to leverage the analytical tractability of random networks of point neurons in order to relate the network structure, and the neuron parameters, to the dynamics of the neurons—in physics parlance, to bridge across the scales from neurons to networks. More concretely, four different models are investigated: 1) fully connected feedforward networks and vanilla recurrent networks of rate neurons; 2) block-structured networks of rate neurons in continuous time; 3) block-structured networks of spiking neurons; and 4) a multi-scale, data-based network of spiking neurons. We consider the first class of models in the light of Bayesian supervised learning and compute their kernel in the infinite-size limit. In the second class of models, we connect dynamical mean-field theory with large-deviation theory, calculate beyond mean-field fluctuations, and perform parameter inference. For the third class of models, we develop a theory for the autocorrelation time of the neurons. Lastly, we consolidate data across multiple modalities into a layer- and population-resolved model of human cortex and compare its activity with cortical recordings. In two detours from the investigation of these four network models, we examine the distribution of neuron densities in cerebral cortex and present a software toolbox for mean-field analyses of spiking networks

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks

    Get PDF
    Memory serves to process and store information about experiences such that this information can be used in future situations. The transfer from transient storage into long-term memory, which retains information for hours, days, and even years, is called consolidation. In brains, information is primarily stored via alteration of synapses, so-called synaptic plasticity. While these changes are at first in a transient early phase, they can be transferred to a late phase, meaning that they become stabilized over the course of several hours. This stabilization has been explained by so-called synaptic tagging and capture (STC) mechanisms. To store and recall memory representations, emergent dynamics arise from the synaptic structure of recurrent networks of neurons. This happens through so-called cell assemblies, which feature particularly strong synapses. It has been proposed that the stabilization of such cell assemblies by STC corresponds to so-called synaptic consolidation, which is observed in humans and other animals in the first hours after acquiring a new memory. The exact connection between the physiological mechanisms of STC and memory consolidation remains, however, unclear. It is equally unknown which influence STC mechanisms exert on further cognitive functions that guide behavior. On timescales of minutes to hours (that means, the timescales of STC) such functions include memory improvement, modification of memories, interference and enhancement of similar memories, and transient priming of certain memories. Thus, diverse memory dynamics may be linked to STC, which can be investigated by employing theoretical methods based on experimental data from the neuronal and the behavioral level. In this thesis, we present a theoretical model of STC-based memory consolidation in recurrent networks of spiking neurons, which are particularly suited to reproduce biologically realistic dynamics. Furthermore, we combine the STC mechanisms with calcium dynamics, which have been found to guide the major processes of early-phase synaptic plasticity in vivo. In three included research articles as well as additional sections, we develop this model and investigate how it can account for a variety of behavioral effects. We find that the model enables the robust implementation of the cognitive memory functions mentioned above. The main steps to this are: 1. demonstrating the formation, consolidation, and improvement of memories represented by cell assemblies, 2. showing that neuromodulator-dependent STC can retroactively control whether information is stored in a temporal or rate-based neural code, and 3. examining interaction of multiple cell assemblies with transient and attractor dynamics in different organizational paradigms. In summary, we demonstrate several ways by which STC controls the late-phase synaptic structure of cell assemblies. Linking these structures to functional dynamics, we show that our STC-based model implements functionality that can be related to long-term memory. Thereby, we provide a basis for the mechanistic explanation of various neuropsychological effects.2021-09-0

    Genetic determination and layout rules of visual cortical architecture

    Get PDF
    The functional architecture of the primary visual cortex is set up by neurons that preferentially respond to visual stimuli with contours of a specific orientation in visual space. In primates and placental carnivores, orientation preference is arranged into continuous and roughly repetitive (iso-) orientation domains. Exceptions are pinwheels that are surrounded by all orientation preferences. The configuration of pinwheels adheres to quantitative species-invariant statistics, the common design. This common design most likely evolved independently at least twice in the course of the past 65 million years, which might indicate a functionally advantageous trait. The possible acquisition of environment-dependent functional traits by genes, the Baldwin effect, makes it conceivable that visual cortical architecture is partially or redundantly encoded by genetic information. In this conception, genetic mechanisms support the emergence of visual cortical architecture or even establish it under unfavorable environments. In this dissertation, I examine the capability of genetic mechanisms for encoding visual cortical architecture and mathematically dissect the pinwheel configuration under measurement noise as well as in different geometries. First, I theoretically explore possible roles of genetic mechanisms in visual cortical development that were previously excluded from theoretical research, mostly because the information capacity of the genome appeared too small to contain a blueprint for wiring up the cortex. For the first time, I provide a biologically plausible scheme for quantitatively encoding functional visual cortical architecture by genetic information that circumvents the alleged information bottleneck. Key ingredients for this mechanism are active transport and trans-neuronal signaling as well as joined dynamics of morphogens and connectome. This theory provides predictions for experimental tests and thus may help to clarify the relative importance of genes and environments on complex human traits. Second, I disentangle the link between orientation domain ensembles and the species-invariant pinwheel statistics of the common design. This examination highlights informative measures of pinwheel configurations for model benchmarking. Third, I mathematically investigate the susceptibility of the pinwheel configuration to measurement noise. The results give rise to an extrapolation method of pinwheel densities to the zero noise limit and provide an approximated analytical expression for confidence regions of pinwheel centers. Thus, the work facilitates high-precision measurements and enhances benchmarking for devising more accurate models of visual cortical development. Finally, I shed light on genuine three-dimensional properties of functional visual cortical architectures. I devise maximum entropy models of three-dimensional functional visual cortical architectures in different geometries. This theory enables the examination of possible evolutionary transitions between different functional architectures for which intermediate organizations might still exist

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Man-made Surface Structures from Triangulated Point Clouds

    Get PDF
    Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.KĂŒnstliche OberflĂ€chenstrukturen aus triangulierten Punktwolken Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und GrĂ¶ĂŸe von Objekten, die mit Kameras, 3D-Laserscannern und anderern rĂ€umlichen Erfassungssystemen aufgenommen wurden. WĂ€hrend viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer ĂŒberlassen. Besonders bei der Rekonstruktion kĂŒnstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden OberflĂ€chenstruktur interessiert, welche nicht inhĂ€rent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen OberflĂ€chenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfĂ€ltig und reichen von industriellen Fertigungskontrollen ĂŒber architektonische Raumaufmaße bis hin zu großmaßstĂ€bigen Stadtmodellen. Das Ziel dieser Arbeit ist es, solche OberflĂ€chenstrukturen automatisch aus triangulierten Punktwolken von kĂŒnstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrĂŒmmter geometrischer Primitive. Modellwissen ĂŒber typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen. Nachdem wir ein parametrisiertes Modell fĂŒr kĂŒnstliche OberflĂ€chenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale OberflĂ€cheneigenschaften berĂŒcksichtigt, teilen wir die gegebene vermaschte OberflĂ€che in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der BeschreibungslĂ€nge beruht, ist diese OberflĂ€chensegmentierung unabhĂ€ngig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung fĂŒhrt eine Menge von ebenen und gekrĂŒmmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen BeschreibungslĂ€nge. Eine globale Klassifikation und bedingte ParameterschĂ€tzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die OberflĂ€chenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen ĂŒber die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von FlĂ€chen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schĂ€tzen eine optimale OberflĂ€chenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens fĂŒr verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-OberflĂ€chenstrukturen mit OberflĂ€chenprimitiven verschiedener Art. Die LeistungsfĂ€higkeit des vorgestellten Verfahrens wird an verschiedenen DatensĂ€tzen experimentell evaluiert. Auf kleinen, synthetisch generierten OberflĂ€chen untersuchen wir die Genauigkeit der geschĂ€tzten OberflĂ€chenparameter, die SensitivitĂ€t bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die RechenkomplexitĂ€t. Außerdem demonstrieren wir die FlexibilitĂ€t bzgl. verschiedener Aufnahmetechniken anhand realer DatensĂ€tze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfĂ€llig fĂŒr Defekte in den Daten oder falsche Modellannahmen
    • 

    corecore