19,625 research outputs found

    Improved Quantum Communication Complexity Bounds for Disjointness and Equality

    Get PDF
    We prove new bounds on the quantum communication complexity of the disjointness and equality problems. For the case of exact and non-deterministic protocols we show that these complexities are all equal to n+1, the previous best lower bound being n/2. We show this by improving a general bound for non-deterministic protocols of de Wolf. We also give an O(sqrt{n}c^{log^* n})-qubit bounded-error protocol for disjointness, modifying and improving the earlier O(sqrt{n}log n) protocol of Buhrman, Cleve, and Wigderson, and prove an Omega(sqrt{n}) lower bound for a large class of protocols that includes the BCW-protocol as well as our new protocol.Comment: 11 pages LaTe

    Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding

    Full text link
    We study coding schemes for error correction in interactive communications. Such interactive coding schemes simulate any nn-round interactive protocol using NN rounds over an adversarial channel that corrupts up to ρN\rho N transmissions. Important performance measures for a coding scheme are its maximum tolerable error rate ρ\rho, communication complexity NN, and computational complexity. We give the first coding scheme for the standard setting which performs optimally in all three measures: Our randomized non-adaptive coding scheme has a near-linear computational complexity and tolerates any error rate δ<1/4\delta < 1/4 with a linear N=Θ(n)N = \Theta(n) communication complexity. This improves over prior results which each performed well in two of these measures. We also give results for other settings of interest, namely, the first computationally and communication efficient schemes that tolerate ρ<27\rho < \frac{2}{7} adaptively, ρ<13\rho < \frac{1}{3} if only one party is required to decode, and ρ<12\rho < \frac{1}{2} if list decoding is allowed. These are the optimal tolerable error rates for the respective settings. These coding schemes also have near linear computational and communication complexity. These results are obtained via two techniques: We give a general black-box reduction which reduces unique decoding, in various settings, to list decoding. We also show how to boost the computational and communication efficiency of any list decoder to become near linear.Comment: preliminary versio

    Approximate Two-Party Privacy-Preserving String Matching with Linear Complexity

    Full text link
    Consider two parties who want to compare their strings, e.g., genomes, but do not want to reveal them to each other. We present a system for privacy-preserving matching of strings, which differs from existing systems by providing a deterministic approximation instead of an exact distance. It is efficient (linear complexity), non-interactive and does not involve a third party which makes it particularly suitable for cloud computing. We extend our protocol, such that it mitigates iterated differential attacks proposed by Goodrich. Further an implementation of the system is evaluated and compared against current privacy-preserving string matching algorithms.Comment: 6 pages, 4 figure
    corecore