636 research outputs found

    The probabilistic approach to limited packings in graphs

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. We consider (closed neighbourhood) packings and their generalization in graphs. A vertex set X in a graph G is a k-limited packing if for every vertex vεV(G), |N[v]∩X|≤k, where N[v] is the closed neighbourhood of v. The k-limited packing number (G) of a graph G is the largest size of a k-limited packing in G. Limited packing problems can be considered as secure facility location problems in networks. In this paper, we develop a new application of the probabilistic method to limited packings in graphs, resulting in lower bounds for the k-limited packing number and a randomized algorithm to find k-limited packings satisfying the bounds. In particular, we prove that for any graph G of order n with maximum vertex degree δ,(G)≥kn(k+1)(δk)(δ+1)k. Also, some other upper and lower bounds for (G) are given

    Dense packing on uniform lattices

    Full text link
    We study the Hard Core Model on the graphs G{\rm {\bf \scriptstyle G}} obtained from Archimedean tilings i.e. configurations in {0,1}G\scriptstyle \{0,1\}^{{\rm {\bf G}}} with the nearest neighbor 1's forbidden. Our particular aim in choosing these graphs is to obtain insight to the geometry of the densest packings in a uniform discrete set-up. We establish density bounds, optimal configurations reaching them in all cases, and introduce a probabilistic cellular automaton that generates the legal configurations. Its rule involves a parameter which can be naturally characterized as packing pressure. It can have a critical value but from packing point of view just as interesting are the noncritical cases. These phenomena are related to the exponential size of the set of densest packings and more specifically whether these packings are maximally symmetric, simple laminated or essentially random packings.Comment: 18 page

    Limited packings of closed neighbourhoods in graphs

    Full text link
    The k-limited packing number, Lk(G)L_k(G), of a graph GG, introduced by Gallant, Gunther, Hartnell, and Rall, is the maximum cardinality of a set XX of vertices of GG such that every vertex of GG has at most kk elements of XX in its closed neighbourhood. The main aim in this paper is to prove the best-possible result that if GG is a cubic graph, then L2(G)V(G)/3L_2(G) \geq |V (G)|/3, improving the previous lower bound given by Gallant, \emph{et al.} In addition, we construct an infinite family of graphs to show that lower bounds given by Gagarin and Zverovich are asymptotically best-possible, up to a constant factor, when kk is fixed and Δ(G)\Delta(G) tends to infinity. For Δ(G)\Delta(G) tending to infinity and kk tending to infinity sufficiently quickly, we give an asymptotically best-possible lower bound for Lk(G)L_k(G), improving previous bounds

    Asymptotic Improvement of the Gilbert-Varshamov Bound on the Size of Binary Codes

    Full text link
    Given positive integers nn and dd, let A2(n,d)A_2(n,d) denote the maximum size of a binary code of length nn and minimum distance dd. The well-known Gilbert-Varshamov bound asserts that A2(n,d)2n/V(n,d1)A_2(n,d) \geq 2^n/V(n,d-1), where V(n,d)=i=0d(ni)V(n,d) = \sum_{i=0}^{d} {n \choose i} is the volume of a Hamming sphere of radius dd. We show that, in fact, there exists a positive constant cc such that A2(n,d)c2nV(n,d1)log2V(n,d1) A_2(n,d) \geq c \frac{2^n}{V(n,d-1)} \log_2 V(n,d-1) whenever d/n0.499d/n \le 0.499. The result follows by recasting the Gilbert- Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.Comment: 10 pages, 3 figures; to appear in the IEEE Transactions on Information Theory, submitted August 12, 2003, revised March 28, 200

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)
    corecore