254 research outputs found

    On the collaboration uncapacitated arc routing problem

    Get PDF
    This paper introduces a new arc routing problem for the optimization of a collaboration scheme among carriers. This yields to the study of a profitable uncapacitated arc routing problem with multiple depots, where carriers collaborate to improve the profit gained. In the first model the goal is the maximization of the total profit of the coalition of carriers, independently of the individual profit of each carrier. Then, a lower bound on the individual profit of each carrier is included. This lower bound may represent the profit of the carrier in the case no collaboration is implemented. The models are formulated as integer linear programs and solved through a branch-and-cut algorithm. Theoretical results, concerning the computational complexity, the impact of collaboration on profit and a game theoretical perspective, are provided. The models are tested on a set of 971 instances generated from 118 benchmark instances for the Privatized Rural Postman Problem, with up to 102 vertices. All the 971 instances are solved to optimality within few seconds.Peer ReviewedPostprint (author's final draft

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Profitable mixed capacitated arc routing and related problems

    Get PDF
    Mixed Capacitated Arc Routing Problems (MCARP) aim to identify a set of vehicle trips that, starting and ending at a depot node, serve a given number of links, regarding the vehicles capacity, and minimizing a cost function. If both profits and costs on arcs are considered, the Profitable Mixed Capacitated Arc Routing Problem (PMCARP) may be defined. We present compact flow based models for the PMCARP, where two types of services are tackled, mandatory and optional. Adaptations of the models to fit into some other related problems are also proposed. The models are evaluated, according to their bounds quality as well as the CPU times, over large sets of test instances. New instances have been created from benchmark ones in order to solve variants that have been introduced here for the first time. Results show the new models performance within CPLEX and compare, whenever available, the proposed models against other resolution methods.info:eu-repo/semantics/publishedVersio

    A branch-and-cut algorithm for the multidepot rural postman problem

    Get PDF
    This paper considers the Multidepot Rural Postman Problem, an extension of the classical Rural Postman Problem in which there are several depots instead of only one. The aim is to construct a minimum cost set of routes traversing each required edge of the graph, where each route starts and ends at the same depot. The paper makes the following scientific contributions: (i) It presents optimality conditions and a worst case analysis for the problem; (ii) It proposes a compact integer linear programming formulation containing only binary variables, as well as a polyhedral analysis; (iii) It develops a branch-and-cut algorithm that includes several new exact and heuristic separation procedures. Instances involving up to four depots, 744 vertices, and 1,315 edges are solved to optimality. These instances contain up to 140 required components and 1,000 required edges.Peer ReviewedPostprint (author's final draft

    Primal-Dual 2-Approximation Algorithm for the Monotonic Multiple Depot Heterogeneous Traveling Salesman Problem

    Get PDF
    We study a Multiple Depot Heterogeneous Traveling Salesman Problem (MDHTSP) where the cost of the traveling between any two targets depends on the type of the vehicle. The travel costs are assumed to be symmetric, satisfy the triangle inequality, and are monotonic, i.e., the travel costs between any two targets monotonically increases with the index of the vehicles. Exploiting the monotonic structure of the travel costs, we present a 2-approximation algorithm based on the primal-dual method

    The Time-Dependent Multiple-Vehicle Prize-Collecting Arc Routing Problem

    Get PDF
    In this paper, we introduce a multi vehicle version of the Time-Dependent Prize-Collecting Arc Routing Problem (TD-MPARP). It is inspired by a situation where a transport manager has to choose between a number of full truck load pick-ups and deliveries to be performed by a fleet of vehicles. Real-life traffic situations where the travel times change with the time of day are taken into account. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time information. Both algorithms are capable of finding good solutions, though the Tabu Search approach generally shows better performance for large instances whereas the VNS is superior for small instances. We discuss the structural differences of the implementation of the algorithms which explain these results

    Multi-depot rural postman problems

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11750-016-0434-zThis paper studies multi-depot rural postman problems on an undirected graph. These problems extend the well-known undirected rural postman problem to the case where there are several depots instead of just one. Linear integer programming formulations that only use binary variables are proposed for the problem that minimizes the overall routing costs and for the model that minimizes the length of the longest route. An exact branch-and-cut algorithm is presented for each considered model, where violated constraints of both types are separated in polynomial time. Despite the difficulty of the problems, the numerical results from a series of computational experiments with various types of instances illustrate a quite good behavior of the algorithms. When the overall routing costs are minimized, over 43 % of the instances were optimally solved at the root node, and 95 % were solved at termination, most of them with a small additional computational effort. When the length of the longest route is minimized, over 25 % of the instances were optimally solved at the root node, and 99 % were solved at termination.Peer ReviewedPostprint (author's final draft
    corecore