418 research outputs found

    Primitive Words, Free Factors and Measure Preservation

    Full text link
    Let F_k be the free group on k generators. A word w \in F_k is called primitive if it belongs to some basis of F_k. We investigate two criteria for primitivity, and consider more generally, subgroups of F_k which are free factors. The first criterion is graph-theoretic and uses Stallings core graphs: given subgroups of finite rank H \le J \le F_k we present a simple procedure to determine whether H is a free factor of J. This yields, in particular, a procedure to determine whether a given element in F_k is primitive. Again let w \in F_k and consider the word map w:G x G x ... x G \to G (from the direct product of k copies of G to G), where G is an arbitrary finite group. We call w measure preserving if given uniform measure on G x G x ... x G, w induces uniform measure on G (for every finite G). This is the second criterion we investigate: it is not hard to see that primitivity implies measure preservation and it was conjectured that the two properties are equivalent. Our combinatorial approach to primitivity allows us to make progress on this problem and in particular prove the conjecture for k=2. It was asked whether the primitive elements of F_k form a closed set in the profinite topology of free groups. Our results provide a positive answer for F_2.Comment: This is a unified version of two manuscripts: "On Primitive words I: A New Algorithm", and "On Primitive Words II: Measure Preservation". 42 pages, 14 figures. Some parts of the paper reorganized towards publication in the Israel J. of Mat

    On random primitive sets, directable NDFAs and the generation of slowly synchronizing DFAs

    Full text link
    We tackle the problem of the randomized generation of slowly synchronizing deterministic automata (DFAs) by generating random primitive sets of matrices. We show that when the randomized procedure is too simple the exponent of the generated sets is O(n log n) with high probability, thus the procedure fails to return DFAs with large reset threshold. We extend this result to random nondeterministic automata (NDFAs) by showing, in particular, that a uniformly sampled NDFA has both a 2-directing word and a 3-directing word of length O(n log n) with high probability. We then present a more involved randomized algorithm that manages to generate DFAs with large reset threshold and we finally leverage this finding for exhibiting new families of DFAs with reset threshold of order Ω(n2/4) \Omega(n^2/4) .Comment: 31 pages, 9 figures. arXiv admin note: text overlap with arXiv:1805.0672

    Eventually Positive Matrices and Tree Sign Patterns

    Get PDF
    A n-by-n matrix A is said to be eventually positive if there is a power k such that AkA^k is entrywise positive, and all subsequent powers are also entrywise positive. Here we provide an expression for the smallest such exponent of a 2-by-2 eventually positive matrix in terms of its entries; we also show that if the graph of an eventually positive matrix is a tree, then the positive part of that matrix must be primitive
    corecore