1,029 research outputs found

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    Usability evaluation of a virtual museum interface

    Get PDF
    The Augmented Representation of Cultural Objects (ARCO) system provides software and interface tools to museum curators to develop virtual museum exhibitions, as well as a virtual environment for museum visitors over the World Wide Web or in informative kiosks. The main purpose of the system is to offer an enhanced educative and entertaining experience to virtual museum visitors. In order to assess the usability of the system, two approaches have been employed: a questionnaire based survey and a Cognitive Walkthrough session. Both approaches employed expert evaluators, such as domain experts and usability experts. The result of this study shows a fair performance of the followed approach, as regards the consumed time, financial and other resources, as a great deal of usability problems has been uncovered and many aspects of the system have been investigated. The knowledge gathered aims at creating a conceptual framework for diagnose usability problems in systems in the area of Virtual Cultural Heritage

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science

    3D Character Modeling in Virtual Reality

    Get PDF
    The paper presents a virtual reality modeling system based on interactive web technologies. The system's goal is to provide a user-friendly virtual environment for the development of 3D characters with an articulated structure. The interface allows the modeling of both the character's joint structure (the hierarchy) and its segment geometry (the skin). The novelty of the system consists of (1) the combination of web technologies used (VRML, Java and EAI) which provides the possibility of online modeling, (2) rules and constraints based operations and thus interface elements, (3) vertices and sets of vertices used as graphics primitives and (4) the possibility to handle and extend hierarchies based on the H-anim structure elements

    The Effects of Task, Task Mapping, and Layout Space on User Performance in Information-Rich Virtual Environments

    Get PDF
    How should abstract information be displayed in Information-Rich Virtual Environments (IRVEs)? There are a variety of techniques available, and it is important to determine which techniques help foster a user’s understanding both within and between abstract and spatial information types. Our evaluation compared two such techniques: Object Space and Display Space. Users strongly prefer Display Space over Object Space, and those who use Display Space may perform better. Display Space was faster and more accurate than Object Space for tasks comparing abstract information. Object Space was more accurate for comparisons of spatial information. These results suggest that for abstract criteria, visibility is a more important requirement than perceptual coupling by depth and association cues. They also support the value of perceptual coupling for tasks with spatial criteria
    corecore