2,163 research outputs found

    Comparison of multiple machine learning algorithms for urban air quality forecasting

    Get PDF
    Environmental air pollution has become one of the major threats to human lives nowadays in developed and developing countries. Due to its importance, there exist various air pollution forecasting models, however, machine learning models proved one of the most efficient methods for prediction. In this paper, we assessed the ability of machine learning techniques to forecast NO2, SO2, and PM10 in Amman, Jordan. We compared multiple machine learning methods like artificial neural networks, support vector regression, decision tree regression, and extreme gradient boosting. We also investigated the effect of the pollution station and the meteorological station distance on the prediction result as well as explored the most relevant seasonal variables and the most important minimal set of features required for prediction to improve the prediction time. The experiments showed promising results for predicting air pollution in Amman with artificial neural network outperforming the other algorithms and scoring RMSE of 0.949 ppb, 0.451 ppb, and 5.570 µg/m3 for NO2, SO2, and PM10 respectively. Our results indicated that when the meteorological variables were obtained from the same pollution station the results were better. We were also able to reduce the time by reducing the set of variables required for prediction from 11 down to 3 and achieved major time improvement by about 80% for NO2, 92% for SO2, and 90% for PM10. The most important variables required for predicting NO2 were the previous day values of NO2, humidity and wind direction. While for SO2 they were the previous day values of SO2, temperature, and wind direction values of the previous day. Finally, for PM10 they were the previous day values of PM10, humidity, and day of the year

    A Machine Learning-Based Method for Modelling a Proprietary SO2 Removal System in the Oil and Gas Sector

    Get PDF
    The aim of this study is to develop a model for a proprietary SO2 removal technology by using machine learning techniques and, more specifically, by exploiting the potentialities of artificial neural networks (ANNs). This technology is employed at the Eni oil and gas treatment plant in southern Italy. The amine circulating in this unit, that allows for a reduction in the SO2 concentration in the flue gases and to be compliant with the required specifications, is a proprietary solvent; thus, its composition is not publicly available. This has led to the idea of developing a machine learning (ML) algorithm for the unit description, with the objective of becoming independent from the licensor and more flexible in unit modelling. The model was developed in MatLab® by implementing ANNs and the aim was to predict three targets, namely the flow rate of SO2 that goes to the Claus unit, the emissions of SO2, and the flow rate of steam sent to the regenerator reboiler. These represent, respectively, the two physical outputs of the unit and a proxy variable of the amine quality. Three different models were developed, one for each target, that employed the Levenberg–Marquardt optimization algorithm. In addition, the ANN topology was optimized case by case. From the analysis of the results, it emerged that with a purely data-driven technique, the targets can be predicted with good accuracy. Therefore, this model can be employed to better manage the SO2 removal system, since it allows for the definition of an optimal control strategy and the maximization of the plant’s productivity by not exceeding the process constraints

    Development and application of statistical methods to support air quality policy decisions

    Get PDF
    Tese de doutoramento. Ciências de Engenharia. Faculdade de Engenharia. Universidade do Porto. 200

    Modelling atmospheric ozone concentration using machine learning algorithms

    Get PDF
    Air quality monitoring is one of several important tasks carried out in the area of environmental science and engineering. Accordingly, the development of air quality predictive models can be very useful as such models can provide early warnings of pollution levels increasing to unsatisfactory levels. The literature review conducted within the research context of this thesis revealed that only a limited number of widely used machine learning algorithms have been employed for the modelling of the concentrations of atmospheric gases such as ozone, nitrogen oxides etc. Despite this observation the research and technology area of machine learning has recently advanced significantly with the introduction of ensemble learning techniques, convolutional and deep neural networks etc. Given these observations the research presented in this thesis aims to investigate the effective use of ensemble learning algorithms with optimised algorithmic settings and the appropriate choice of base layer algorithms to create effective and efficient models for the prediction and forecasting of specifically, ground level ozone (O3). Three main research contributions have been made by this thesis in the application area of modelling O3 concentrations. As the first contribution, the performance of several ensemble learning (Homogeneous and Heterogonous) algorithms were investigated and compared with all popular and widely used single base learning algorithms. The results have showed impressive prediction performance improvement obtainable by using meta learning (Bagging, Stacking, and Voting) algorithms. The performances of the three investigated meta learning algorithms were similar in nature giving an average 0.91 correlation coefficient, in prediction accuracy. Thus as a second contribution, the effective use of feature selection and parameter based optimisation was carried out in conjunction with the application of Multilayer Perceptron, Support Vector Machines, Random Forest and Bagging based learning techniques providing significant improvements in prediction accuracy. The third contribution of research presented in this thesis includes the univariate and multivariate forecasting of ozone concentrations based of optimised Ensemble Learning algorithms. The results reported supersedes the accuracy levels reported in forecasting Ozone concentration variations based on widely used, single base learning algorithms. In summary the research conducted within this thesis bridges an existing research gap in big data analytics related to environment pollution modelling, prediction and forecasting where present research is largely limited to using standard learning algorithms such as Artificial Neural Networks and Support Vector Machines often available within popular commercial software packages

    Estimation of PM10-bound As, Cd, Ni and Pb levels by means of statistical modelling: PLSR and ANN approaches

    Get PDF
    Air quality assessment regarding metals and metalloids using experimental measurements is expensive and time consuming due to the cost and time required for the analytical determination of the levels of these pollutants. According to the European Union (EU) Air Quality Framework Directive (Directive 2008/50/EC), other alternatives, such as objective estimation techniques, can be considered for ambient air quality assessment in zones and agglomerations where the level of pollutants is below a certain concentration value known as the lower assessment threshold. These conditions occur in urban areas in Cantabria (northern Spain). This work aims to estimate the levels of As, Cd, Ni and Pb in airborne PM10 at two urban sites in the Cantabria region (Castro Urdiales and Reinosa) using statistical models as objective estimation techniques. These models were developed based on three different approaches: partial least squares regression (PLSR), artificial neural networks (ANNs) and an alternative approach consisting of principal component analysis (PCA) coupled with ANNs (PCA-ANN). Additionally, these models were externally validated using previously unseen data. The results show that the models developed in this work based on PLSR and ANNs fulfil the EU uncertainty requirements for objective estimation techniques and provide an acceptable estimation of the mean values. As a consequence, they could be considered as an alternative to experimental measurements for air quality assessment regarding the aforementioned pollutants in the study areas while saving time and resources.The authors gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness through the Project CMT2010-16068. The authors also thank the Regional Environment Ministry of the Cantabria Government for providing the PM10 samples at the Castro Urdiales and Reinosa sites

    A proposed methodology for the assessment of arsenic, nickel, cadmium and lead levels in ambient air

    Get PDF
    Air quality assessment, required by the European Union (EU) Air Quality Directive, Directive 2008/50/EC, is part of the functions attributed to Environmental Management authorities. Based on the cost and time consumption associated with the experimental works required for the air quality assessment in relation to the EU-regulated metal and metalloids, other methods such as modelling or objective estimation arise as competitive alternatives when, in accordance with the Air Quality Directive, the levels of pollutants permit their use at a specific location. This work investigates the possibility of using statistical models based on Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANNs) to estimate the levels of arsenic (As), cadmium (Cd), nickel (Ni) and lead (Pb) in ambient air and their application for policy purposes. A methodology comprising the main steps that should be taken into consideration to prepare the input database, develop the model and evaluate their performance is proposed and applied to a case of study in Santander (Spain). It was observed that even though these approaches present some difficulties in estimating the individual sample concentrations, having an equivalent performance they can be considered valid for the estimation of the mean values - those to be compared with the limit/target values - fulfilling the uncertainty requirements in the context of the Air Quality Directive. Additionally, the influence of the consideration of input variables related to atmospheric stability on the performance of the studied statistical models has been determined. Although the consideration of these variables as additional inputs had no effect on As and Cd models, they did yield an improvement for Pb and Ni, especially with regard to ANN models.This work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the Projects CTM2010-16068 and CTM2013-43904R. Germán Santos thanks MINECO for his FPI research fellowship (BES-2011-047908)

    Determining Effective Parameters on CO Concentration in Tehran Air by Sensitivity Analysis based on Neural Network Prediction

    Get PDF
    One of the most toxic pollutant gases produced by fossil fuels is carbon monoxide. Hence, the accurate and regular estimation and control of CO in the cities such as Tehran is inevitable. In this research, for the first time, CO concentration in ambient air was predicted based on 12 important urban and meteorological parameters by neural network. Also, the sensitivity analysis of the factors that effect on the concentration of carbon monoxide in Tehran was investigated based on the pollutant concentration predictive model. In this research, the daily statistical data of Tehran metropolis over the course of five consecutive years from 12 factors affecting the amount of carbon monoxide in Tehran, such as population, density, precipitation, temperature, urban traffic, wind speed, gasoil consumption, moisture, air flow, effective vision and air pressure was used. Based on this database, the artificial neural network with the best possible algorithm had been trained to predict this contaminant and root mean square error of model was equal to 2.54. Then, sensitivity analysis was done to find the most effective factor on the concentration of carbon monoxide, urban density and air pressure. In order to control this hazardous contaminant in urban management, these parameters should be taken into account. Based on the result, by preventing the construction of high towers in Tehran, wind speed average will increase and increasing in wind speed (25%) caused to reducing in carbon monoxide concentration (about 12%). Also, prevention of urban density (25%) will cause to prevention of increasing CO concentration (about 10%)
    corecore