11,142 research outputs found

    Mechanisms for Risk Averse Agents, Without Loss

    Full text link
    Auctions in which agents' payoffs are random variables have received increased attention in recent years. In particular, recent work in algorithmic mechanism design has produced mechanisms employing internal randomization, partly in response to limitations on deterministic mechanisms imposed by computational complexity. For many of these mechanisms, which are often referred to as truthful-in-expectation, incentive compatibility is contingent on the assumption that agents are risk-neutral. These mechanisms have been criticized on the grounds that this assumption is too strong, because "real" agents are typically risk averse, and moreover their precise attitude towards risk is typically unknown a-priori. In response, researchers in algorithmic mechanism design have sought the design of universally-truthful mechanisms --- mechanisms for which incentive-compatibility makes no assumptions regarding agents' attitudes towards risk. We show that any truthful-in-expectation mechanism can be generically transformed into a mechanism that is incentive compatible even when agents are risk averse, without modifying the mechanism's allocation rule. The transformed mechanism does not require reporting of agents' risk profiles. Equivalently, our result can be stated as follows: Every (randomized) allocation rule that is implementable in dominant strategies when players are risk neutral is also implementable when players are endowed with an arbitrary and unknown concave utility function for money.Comment: Presented at the workshop on risk aversion in algorithmic game theory and mechanism design, held in conjunction with EC 201

    Budget Feasible Mechanism Design: From Prior-Free to Bayesian

    Full text link
    Budget feasible mechanism design studies procurement combinatorial auctions where the sellers have private costs to produce items, and the buyer(auctioneer) aims to maximize a social valuation function on subsets of items, under the budget constraint on the total payment. One of the most important questions in the field is "which valuation domains admit truthful budget feasible mechanisms with `small' approximations (compared to the social optimum)?" Singer showed that additive and submodular functions have such constant approximations. Recently, Dobzinski, Papadimitriou, and Singer gave an O(log^2 n)-approximation mechanism for subadditive functions; they also remarked that: "A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive functions." We address this question from two viewpoints: prior-free worst case analysis and Bayesian analysis. For the prior-free framework, we use an LP that describes the fractional cover of the valuation function; it is also connected to the concept of approximate core in cooperative game theory. We provide an O(I)-approximation mechanism for subadditive functions, via the worst case integrality gap I of LP. This implies an O(log n)-approximation for subadditive valuations, O(1)-approximation for XOS valuations, and for valuations with a constant I. XOS valuations are an important class of functions that lie between submodular and subadditive classes. We give another polynomial time O(log n/loglog n) sub-logarithmic approximation mechanism for subadditive valuations. For the Bayesian framework, we provide a constant approximation mechanism for all subadditive functions, using the above prior-free mechanism for XOS valuations as a subroutine. Our mechanism allows correlations in the distribution of private information and is universally truthful.Comment: to appear in STOC 201

    Hedging predictions in machine learning

    Get PDF
    Recent advances in machine learning make it possible to design efficient prediction algorithms for data sets with huge numbers of parameters. This paper describes a new technique for "hedging" the predictions output by many such algorithms, including support vector machines, kernel ridge regression, kernel nearest neighbours, and by many other state-of-the-art methods. The hedged predictions for the labels of new objects include quantitative measures of their own accuracy and reliability. These measures are provably valid under the assumption of randomness, traditional in machine learning: the objects and their labels are assumed to be generated independently from the same probability distribution. In particular, it becomes possible to control (up to statistical fluctuations) the number of erroneous predictions by selecting a suitable confidence level. Validity being achieved automatically, the remaining goal of hedged prediction is efficiency: taking full account of the new objects' features and other available information to produce as accurate predictions as possible. This can be done successfully using the powerful machinery of modern machine learning.Comment: 24 pages; 9 figures; 2 tables; a version of this paper (with discussion and rejoinder) is to appear in "The Computer Journal
    • …
    corecore