7,484 research outputs found

    Node counting in wireless ad-hoc networks

    Get PDF
    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct neighbors of each node. The algorithms are simulated, allowing comparison of their performance

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Reinforced communication and social navigation generate groups in model networks

    Full text link
    To investigate the role of information flow in group formation, we introduce a model of communication and social navigation. We let agents gather information in an idealized network society, and demonstrate that heterogeneous groups can evolve without presuming that individuals have different interests. In our scenario, individuals' access to global information is constrained by local communication with the nearest neighbors on a dynamic network. The result is reinforced interests among like-minded agents in modular networks; the flow of information works as a glue that keeps individuals together. The model explains group formation in terms of limited information access and highlights global broadcasting of information as a way to counterbalance this fragmentation. To illustrate how the information constraints imposed by the communication structure affects future development of real-world systems, we extrapolate dynamics from the topology of four social networks.Comment: 7 pages, 3 figure

    On the Impact of Geometry on Ad Hoc Communication in Wireless Networks

    Full text link
    In this work we address the question how important is the knowledge of geometric location and network density to the efficiency of (distributed) wireless communication in ad hoc networks. We study fundamental communication task of broadcast and develop well-scalable, randomized algorithms that do not rely on GPS information, and which efficiency formulas do not depend on how dense the geometric network is. We consider two settings: with and without spontaneous wake-up of nodes. In the former setting, in which all nodes start the protocol at the same time, our algorithm accomplishes broadcast in O(Dlogn+log2n)O(D\log n + \log^2 n) rounds under the SINR model, with high probability (whp), where DD is the diameter of the communication graph and nn is the number of stations. In the latter setting, in which only the source node containing the original message is active in the beginning, we develop a slightly slower algorithm working in O(Dlog2n)O(D\log^2 n) rounds whp. Both algorithms are based on a novel distributed coloring method, which is of independent interest and potential applicability to other communication tasks under the SINR wireless model
    corecore