18 research outputs found

    A New Client-Server Architecture for Distributed Query Processing

    Get PDF
    This paper presents the idea of "tuple bit-vectors" for distributed query processing. Using tuple bit-vectors, a new two-way semijoin operator called 2SJ++ that enhances the semijoin with an essentially "free" backward reduction capability is proposed. We explore in detail the benefits and costs of 2SJ++ compared with other semijoin variants, and its effect on distributed query processing performance. We then focus on one particular distributed query processing algorithm, called the "one-shot" algorithm. We modify the one-shot algorithm by using 2SJ++ and demonstrate the improvements achieved in network transmission cost compared with the original one-shot technique. We use this improvement to demonstrate that equipped with the 2SJ++ technique, one can improve the performance of distributed query processing algorithms significantly without adding much complexity to the algorithms

    Execution strategies for SQL subqueries

    Full text link
    Optimizing SQL subqueries has been an active area in database research and the database industry throughout the last decades. Pre-vious work has already identified some approaches to efficiently execute relational subqueries. For satisfactory performance, proper choice of subquery execution strategies becomes even more essen-tial today with the increase in decision support systems and auto-matically generated SQL, e.g., with ad-hoc reporting tools. This goes hand in hand with increasing query complexity and growing data volumes – which all pose challenges for an industrial-strength query optimizer. This current paper explores the basic building blocks that Microsoft SQL Server utilizes to optimize and execute relational subqueries. We start with indispensable prerequisites such as detection and removal of correlations for subqueries. We identify a full spectrum of fundamental subquery execution strategies such as forward and reverse lookup as well as set-based approaches, explain the different execution strategies for subqueries implemented in SQL Server, and relate them to the current state of the art. To the best of our knowl-edge, several strategies discussed in this paper have not been pub-lished before. An experimental evaluation complements the paper. It quantifies the performance characteristics of the different approaches and shows that indeed alternative execution strategies are needed in different circumstances, which make a cost-based query optimizer indispen-sable for adequate query performance

    Finding intersection models: From chordal to Helly circular-arc graphs

    Get PDF
    Every chordal graph G admits a representation as the intersection graph of a family of subtrees of a tree. A classic way of finding such an intersection model is to look for a maximum spanning tree of the valuated clique graph of G. Similar techniques have been applied to find intersection models of chordal graph subclasses as interval graphs and path graphs. In this work, we extend those methods to be applied beyond chordal graphs: we prove that a graph G can be represented as the intersection of a Helly separating family of graphs belonging to a given class if and only if there exists a spanning subgraph of the clique graph of G satisfying a particular condition. Moreover, such a spanning subgraph is characterized by its weight in the valuated clique graph of G. The specific case of Helly circular-arc graphs is treated. We show that the canonical intersection models of those graphs correspond to the maximum spanning cycles of the valuated clique graph.Facultad de Ciencias Exacta

    Bloom Filters in Adversarial Environments

    Get PDF
    Many efficient data structures use randomness, allowing them to improve upon deterministic ones. Usually, their efficiency and correctness are analyzed using probabilistic tools under the assumption that the inputs and queries are independent of the internal randomness of the data structure. In this work, we consider data structures in a more robust model, which we call the adversarial model. Roughly speaking, this model allows an adversary to choose inputs and queries adaptively according to previous responses. Specifically, we consider a data structure known as "Bloom filter" and prove a tight connection between Bloom filters in this model and cryptography. A Bloom filter represents a set SS of elements approximately, by using fewer bits than a precise representation. The price for succinctness is allowing some errors: for any xSx \in S it should always answer `Yes', and for any xSx \notin S it should answer `Yes' only with small probability. In the adversarial model, we consider both efficient adversaries (that run in polynomial time) and computationally unbounded adversaries that are only bounded in the number of queries they can make. For computationally bounded adversaries, we show that non-trivial (memory-wise) Bloom filters exist if and only if one-way functions exist. For unbounded adversaries we show that there exists a Bloom filter for sets of size nn and error ε\varepsilon, that is secure against tt queries and uses only O(nlog1ε+t)O(n \log{\frac{1}{\varepsilon}}+t) bits of memory. In comparison, nlog1εn\log{\frac{1}{\varepsilon}} is the best possible under a non-adaptive adversary

    On the Complexity of Core, Kernel, and Bargaining Set

    Get PDF
    Coalitional games are mathematical models suited to analyze scenarios where players can collaborate by forming coalitions in order to obtain higher worths than by acting in isolation. A fundamental problem for coalitional games is to single out the most desirable outcomes in terms of appropriate notions of worth distributions, which are usually called solution concepts. Motivated by the fact that decisions taken by realistic players cannot involve unbounded resources, recent computer science literature reconsidered the definition of such concepts by advocating the relevance of assessing the amount of resources needed for their computation in terms of their computational complexity. By following this avenue of research, the paper provides a complete picture of the complexity issues arising with three prominent solution concepts for coalitional games with transferable utility, namely, the core, the kernel, and the bargaining set, whenever the game worth-function is represented in some reasonable compact form (otherwise, if the worths of all coalitions are explicitly listed, the input sizes are so large that complexity problems are---artificially---trivial). The starting investigation point is the setting of graph games, about which various open questions were stated in the literature. The paper gives an answer to these questions, and in addition provides new insights on the setting, by characterizing the computational complexity of the three concepts in some relevant generalizations and specializations.Comment: 30 pages, 6 figure

    A join-based hybrid parameter for constraint satisfaction

    Get PDF
    We propose joinwidth, a new complexity parameter for the Constraint Satisfaction Problem (CSP). The definition of joinwidth is based on the arrangement of basic operations on relations (joins, projections, and pruning), which inherently reflects the steps required to solve the instance. We use joinwidth to obtain polynomial-time algorithms (if a corresponding decomposition is provided in the input) as well as fixed-parameter algorithms (if no such decomposition is provided) for solving the CSP. Joinwidth is a hybrid parameter, as it takes both the graphical structure as well as the constraint relations that appear in the instance into account. It has, therefore, the potential to capture larger classes of tractable instances than purely structural parameters like hypertree width and the more general fractional hypertree width (fhtw). Indeed, we show that any class of instances of bounded fhtw also has bounded joinwidth, and that there exist classes of instances of bounded joinwidth and unbounded fhtw, so bounded joinwidth properly generalizes bounded fhtw. We further show that bounded joinwidth also properly generalizes several other known hybrid restrictions, such as fhtw with degree constraints and functional dependencies. In this sense, bounded joinwidth can be seen as a unifying principle that explains the tractability of several seemingly unrelated classes of CSP instances

    Tree Projections and Constraint Optimization Problems: Fixed-Parameter Tractability and Parallel Algorithms

    Full text link
    Tree projections provide a unifying framework to deal with most structural decomposition methods of constraint satisfaction problems (CSPs). Within this framework, a CSP instance is decomposed into a number of sub-problems, called views, whose solutions are either already available or can be computed efficiently. The goal is to arrange portions of these views in a tree-like structure, called tree projection, which determines an efficiently solvable CSP instance equivalent to the original one. Deciding whether a tree projection exists is NP-hard. Solution methods have therefore been proposed in the literature that do not require a tree projection to be given, and that either correctly decide whether the given CSP instance is satisfiable, or return that a tree projection actually does not exist. These approaches had not been generalized so far on CSP extensions for optimization problems, where the goal is to compute a solution of maximum value/minimum cost. The paper fills the gap, by exhibiting a fixed-parameter polynomial-time algorithm that either disproves the existence of tree projections or computes an optimal solution, with the parameter being the size of the expression of the objective function to be optimized over all possible solutions (and not the size of the whole constraint formula, used in related works). Tractability results are also established for the problem of returning the best K solutions. Finally, parallel algorithms for such optimization problems are proposed and analyzed. Given that the classes of acyclic hypergraphs, hypergraphs of bounded treewidth, and hypergraphs of bounded generalized hypertree width are all covered as special cases of the tree projection framework, the results in this paper directly apply to these classes. These classes are extensively considered in the CSP setting, as well as in conjunctive database query evaluation and optimization
    corecore