7,981 research outputs found

    Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains

    Get PDF
    Reaction-diffusion systems have been widely studied in developmental biology, chemistry and more recently in financial mathematics. Most of these systems comprise nonlinear reaction terms which makes it difficult to find closed form solutions. It therefore becomes convenient to look for numerical solutions: finite difference, finite element, finite volume and spectral methods are typical examples of the numerical methods used. Most of these methods are locally based schemes. We examine the implications of mesh structure on numerically computed solutions of a well-studied reaction-diffusion model system on two-dimensional fixed and growing domains. The incorporation of domain growth creates an additional parameter – the grid-point velocity – and this greatly influences the selection of certain symmetric solutions for the ADI finite difference scheme when a uniform square mesh structure is used. Domain growth coupled with grid-point velocity on a uniform square mesh stabilises certain patterns which are however very sensitive to any kind of perturbation in mesh structure. We compare our results to those obtained by use of finite elements on unstructured triangular elements

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Get PDF
    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling

    Finite element solution techniques for large-scale problems in computational fluid dynamics

    Get PDF
    Element-by-element approximate factorization, implicit-explicit and adaptive implicit-explicit approximation procedures are presented for the finite-element formulations of large-scale fluid dynamics problems. The element-by-element approximation scheme totally eliminates the need for formation, storage and inversion of large global matrices. Implicit-explicit schemes, which are approximations to implicit schemes, substantially reduce the computational burden associated with large global matrices. In the adaptive implicit-explicit scheme, the implicit elements are selected dynamically based on element level stability and accuracy considerations. This scheme provides implicit refinement where it is needed. The methods are applied to various problems governed by the convection-diffusion and incompressible Navier-Stokes equations. In all cases studied, the results obtained are indistinguishable from those obtained by the implicit formulations

    A new hybrid implicit-explicit FDTD method for local subgridding in multiscale 2-D TE scattering problems

    Get PDF
    The conventional finite-difference time-domain (FDTD) method with staggered Yee scheme does not easily allow including thin material layers, especially so if these layers are highly conductive. This paper proposes a novel subgridding technique for 2-D problems, based on a hybrid implicit-explicit scheme, which efficiently copes with this problem. In the subgrid, the new method collocates field components such that the thin layer boundaries are defined unambiguously. Moreover, aspect ratios of more than a million do not impair the stability of the method and allow for very accurate predictions of the skin effect. The new method retains the Courant limit of the coarse Yee grid and is easily incorporated into existing FDTD codes. A number of illustrative examples, including scattering by a metal grating, demonstrate the accuracy and stability of the new method

    Modelling of impulse loading in high-temperature superconductors. Assessment of accuracy and performance of computational techniques.

    No full text
    Purpose – The aim of this paper is to access performance of existing computational techniques to model strongly non-linear field diffusion problems. Design/methodology/approach – Multidimensional application of a finite volume front-fixing method to various front-type problems with moving boundaries and non-linear material properties is discussed. Advantages and implementation problems of the technique are highlighted by comparing the front-fixing method with computations using fixed grids. Particular attention is focused on conservation properties of the algorithm and accurate solutions close to the moving boundaries. The algorithm is tested using analytical solutions of diffusion problems with cylindrical symmetry with both spatial and temporal accuracy analysed. Findings – Several advantages are identified in using a front-fixing method for modelling of impulse phenomena in high-temperature superconductors (HTS), namely high accuracy can be obtained with a small number of grid points, and standard numerical methods for convection problems with diffusion can be utilised. Approximately, first order of spatial accuracy is found for all methods (stationary or mobile grids) for 2D problems with impulse events. Nevertheless, errors resulting from a front-fixing technique are much smaller in comparison with fixed grids. Fractional steps method is proved to be an effective algorithm for solving the equations obtained. A symmetrisation procedure has to be introduced to eliminate a directional bias for a standard asymmetric split in diffusion processes. Originality/value – This paper for the first time compares in detail advantages and implementation complications of a front-fixing method when applied to the front-type field diffusion problems common to HTS. Particular attention is paid to accurate solutions in the region close to the moving front where rapid changes in material properties are responsible for large computational errors. Keywords - Modelling, Numerical analysis, Diffusion, High temperatures, Superconductors Paper type - Research pape

    Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods

    Full text link
    The emergence and understanding of new design paradigms that exploit flow induced mechanical instabilities for propulsion or energy harvesting demands robust and accurate flow structure interaction numerical models. In this context, we develop a novel two dimensional algorithm that combines a Vortex Particle-Mesh (VPM) method and a Multi-Body System (MBS) solver for the simulation of passive and actuated structures in fluids. The hydrodynamic forces and torques are recovered through an innovative approach which crucially complements and extends the projection and penalization approach of Coquerelle et al. and Gazzola et al. The resulting method avoids time consuming computation of the stresses at the wall to recover the force distribution on the surface of complex deforming shapes. This feature distinguishes the proposed approach from other VPM formulations. The methodology was verified against a number of benchmark results ranging from the sedimentation of a 2D cylinder to a passive three segmented structure in the wake of a cylinder. We then showcase the capabilities of this method through the study of an energy harvesting structure where the stocking process is modeled by the use of damping elements
    • 

    corecore