5,456 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Energy use in residential buildings: Impact of building automation control systems on energy performance and flexibility

    Get PDF
    This work shows the results of a research activity aimed at characterizing the energy habits of Italian residential users. In detail, by the energy simulation of a buildings sample, the opportunity to implement a demand/response program (DR) has been investigated. Italian residential utilities are poorly electrified and flexible loads are low. The presence of an automation system is an essential requirement for participating in a DR program and, in addition, it can allow important reductions in energy consumption. In this work the characteristics of three control systems have been defined, based on the services incidence on energy consumptions along with a sensitivity analysis on some energy drivers. Using the procedure established by the European Standard EN 15232, the achievable energy and economic savings have been evaluated. Finally, a financial analysis of the investments has been carried out, considering also the incentives provided by the Italian regulations. The payback time is generally not very long: depending on the control system features it varies from 7 to 10 years; moreover, the automation system installation within dwellings is a relatively simple activity, which is characterized by a limited execution times and by an initial expenditure ranging in 1000 € to 4000 €, related to the three sample systems

    Optimized Household Demand Management with Local Solar PV Generation

    Full text link
    Demand Side Management (DSM) strategies are of-ten associated with the objectives of smoothing the load curve and reducing peak load. Although the future of demand side manage-ment is technically dependent on remote and automatic control of residential loads, the end-users play a significant role by shifting the use of appliances to the off-peak hours when they are exposed to Day-ahead market price. This paper proposes an optimum so-lution to the problem of scheduling of household demand side management in the presence of PV generation under a set of tech-nical constraints such as dynamic electricity pricing and voltage deviation. The proposed solution is implemented based on the Clonal Selection Algorithm (CSA). This solution is evaluated through a set of scenarios and simulation results show that the proposed approach results in the reduction of electricity bills and the import of energy from the grid
    • …
    corecore